Performance test of the gripper control system on a robot arm for picking tomatoes

Authors

  • Oki Saputra Universitas Mataram
  • Wahyudi Wahyudi Universitas Mataram
  • Joko Sumarsono Universitas Mataram
  • Diah Ajeng Setiawati Universitas Mataram
  • Endang Purnama Dewi Universitas Mataram

DOI:

https://doi.org/10.31764/jau.v11i1.20868

Keywords:

gripper, robotic arm, precision agriculture, tomato harvesting, variable angles

Abstract

As the demand for precision agriculture intensifies, the integration of robotics into crop harvesting processes becomes imperative. This study addresses the design and evaluation of a gripper specifically tailored for a robotic arm, aiming to enhance the efficiency of tomato harvesting. The gripper is meticulously crafted, employing a 3 mm plywood material and subjected to rigorous testing at variable angles of 40°, 45°, and 50°. The design process initiates with a meticulous blueprint and laser printing, utilizing 3 mm plywood to create a robust gripper structure.  Experimental trials are conducted to assess the gripper's performance under different angle configurations. The results reveal an exemplary success rate, with a 100% achievement in the successful transfer of tomatoes without incurring any damage. The gripper's adaptability to variable angles proves crucial in maintaining. the integrity of tomatoes during the harvesting process. Furthermore, data analysis encompasses crucial parameters such as gripping time, torque exerted by the gripper, and the percentage of tomatoes successfully transferred Testing results reveal a gripping time of 0.14 seconds, indicating an efficient gripper with the highest torque at a 40° angle. The detailed design and adaptive nature of the gripper hold promise as precision technology for tomato harvesting, contributing to discussions on the integration of robotics in agriculture, particularly in optimizing harvests. Future recommendations include enhancing the gripper's structural materials for increased durability and incorporating pressure sensors to further refine its capabilities

References

Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601

Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2007). Autonomous Fruit Picking Machine: A Robotic Apple Harvester. Springer Tracts in Advanced Robotics, 42. https://doi.org/10.1007/978-3-540-75404-6_51

Chen, K., Li, T., Yan, T., Xie, F., Feng, Q., Zhu, Q., & Zhao, C. (2022). A Soft Gripper Design for Apple Harvesting with Force Feedback and Fruit Slip Detection. Agriculture, 12(11). https://doi.org/10.3390/agriculture12111802

DeSA, U. N. (2015). World population prospects: The 2015 revision, key findings and advance tables. Working PaperNo.

Guang, W., Baraldo, M., & Furlanut, M. (1995). Calculating percentage prediction error: A user’s note. Pharmacological Research, 32(4), 241–248. https://doi.org/https://doi.org/10.1016/S1043-6618(05)80029-5

He, Z., Karkee, M., & Zhang, Q. (2022). Detecting and Localizing Strawberry Centers for Robotic Harvesting in Field Environment. IFAC-PapersOnLine, 55(32), 30–35. https://doi.org/10.1016/j.ifacol.2022.11.110

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3, 150–164. https://doi.org/10.1016/j.ijin.2022.09.004

Lokasari, K. N. (2011). Pengkajian kemasan dalam dan pengisi terhadap mutu buah tomat (Lycopersicon esculentum Mill.) pada kemasan peti kayu selama transportasi.

Navas, E., Fernández, R., Sepúlveda, D., Armada, M., & Gonzalez-De-santos, P. (2021). Soft grippers for automatic crop harvesting: A review. In Sensors (Vol. 21, Issue 8). MDPI AG. https://doi.org/10.3390/s21082689

Paraforos, D. S., Reutemann, M., Sharipov, G., Werner, R., & Griepentrog, H. W. (2017). Total station data assessment using an industrial robotic arm for dynamic 3D in-field positioning with sub-centimetre accuracy. Computers and Electronics in Agriculture, 136, 166–175. https://doi.org/10.1016/j.compag.2017.03.009

Rachmawati, R. (2021). SMART FARMING 4.0 UNTUK MEWUJUDKAN PERTANIAN INDONESIA MAJU, MANDIRI, DAN MODERN. Forum Penelitian Agro Ekonomi, 38, 137. https://doi.org/10.21082/fae.v38n2.2020.137-154

Rizka, G., Nrp, A., Pembimbing, D., Budiman, F., & Kontrol, K. (2017). RANCANG BANGUN LENGAN ROBOT PENJEPIT PCB 3 DOF BERBASIS ARDUINO UNTUK PROSES ETCHING PCB OTOMATIS.

Ruiz-Ruiz, F. J., Ventura, J., Urdiales, C., & Gómez-de-Gabriel, J. M. (2022). Compliant gripper with force estimation for physical human–robot interaction. Mechanism and Machine Theory, 178. https://doi.org/10.1016/j.mechmachtheory.2022.105062

Suwati, Muanah, Ahmad Akromul Huda, & Adi Gunawan. (2022). Analisis ekonomi budidaya tomat di lahan kering dengan teknik irigasi tetes. Jurnal Agrotek UMMAT, 9(3).

Vu, Q., Kuzov, M., & Ronzhin, A. (2018). Hierarchical classification of robotic grippers applied for agricultural object manipulations. MATEC Web of Conferences, 161, 03015.

Wang, G., Yu, Y., & Feng, Q. (2016). Design of End-effector for Tomato Robotic Harvesting. IFAC-PapersOnLine, 49(16), 190–193. https://doi.org/10.1016/j.ifacol.2016.10.035

Zhao, Y., Gong, L., Liu, C., & Huang, Y. (2016). Dual-arm Robot Design and Testing for Harvesting Tomato in Greenhouse. IFAC-PapersOnLine, 49(16), 161–165. https://doi.org/10.1016/j.ifacol.2016.10.030

Published

2024-01-20