SOIL FERTILITY STATUS IN MANDALA COSTUMARY FOREST BASED ON TOPOGRAPHY LEVELS

Authors

  • Tuti Mutia State University Of Malang
  • Sumarmi Sumarmi State University Of Malang
  • Ravines Rohit Prasad Fiji National University

DOI:

https://doi.org/10.31764/geography.v11i1.14160

Keywords:

Soil Fertility, Topography, Soil Organic Matter, Forest

Abstract

Abstract: The level of soil fertility based on nutrients is influenced by the topography of a region. The purpose of this study was to determine the status of soil fertility at a topography of 300-350 masl in the Mandala customary forest based on C, N, P and K content. , 320-330 masl, 330-340 masl and 340-350 masl. Soil analysis uses chemical laboratory tests to determine the content of C, N, P and K. Elements C, N, P and K are associated with soil fertility criteria. Then determining the status of soil fertility is done by looking for the scoring of the element criteria. The results showed that the status of soil fertility in the Mandala customary forest was very high. At 330-350 masl topography, soil fertility is classified as very high, while soil fertility is very high at 300-330 masl topography. The higher a place, the chemical properties of the soil will increase, so that soil fertility will increase. The altitude limit that affects soil fertility starts from 0 masl <-> 3000 masl. Soil fertility status can be used as a guide in making decisions in managing forests to maintain the availability of nutrients.


Abstrak:Tingkat kesuburan tanah berdasarkan unsur hara dipengaruhi oleh topography suatu wialyah. Tujuan penelitian ini adalah untuk mengetahui status kesuburan tanah pada topografi 300-350 mdpl di hutan adat Mandala berdasarkan kandungan C, N, P dan K. Sampel tanah diambil dari 5 titik topografi yang berbeda yaitu pada ketinggian 300-310 mdpl, 310-320 mdpl, 320-330 mdpl, 330-340 mdpl dan 340-350 mdpl. Analisis tanah menggunakan uji laboratorium kimia untuk mengetahui kandungan C, N, P dan K. Unsur C, N, P dan K dikaitkan dengan kriteria kesuburan tanah. Kemudian penentuan status kesuburan tanah dilakukan dengan mencari skoring dari kriteria elemen. Hasil penelitian menunjukkan bahwa status kesuburan tanah di hutan adat Mandala sangat tinggi. Pada topografi 330-350 mdpl, kesuburan tanah tergolong sangat tinggi, sedangkan kesuburan tanah sangat tinggi pada topografi 300-330 mdpl. Semakin tinggi suatu tempat maka sifat kimiawi tanah semakin meningkat, pada ketinggian sehingga kesuburan tanah semakin meningkat. Batas ketinggian yang mempengaruhi kesuburan tanah mulai dari 0mdpl<->3000mdpl. Status kesuburan tanah dapat dijadikan pedoman dalam mengambil keputusan dalam mengelola hutan untuk menjaga ketersediaan unsur hara.

References

Ahmed A., Aref I., Alshahrani T. 2020. Investigating the variations of soil fertility and Sorghum bicolor L. physiological performance under plantation of some Acacia species. Plant, Soil and Environment, 66: 33–40.

Ãlvarez A., Shany N. 2012. An experience of participatory management of biodiversity with Amazon communities. Revista Peruana de Biologia, 19: 223–232

Angers D.A., Bolinder M.A., Carter M.R., Gregorich E.G., Drury C.F., Liang B.C., Voroney R.P., Simard R.R., Donald R.G., Beyaert R.P., Martel J. 1997. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil and Tillage Research, 41: 191–201.

Angers D.A., Eriksen-Hamel N.S. 2008. Full inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Science Society of America Journal, 72: 1370–1374.

Arsyad S. 2010. Konservasi Tanah dan Air, IPB Press, Bogor.

Augusto, L.; De Schrijver, A.; Vesterdal, L.; Smolander, A.; Prescott, C.; Ranger, J. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 90, 444–466.

Audette, Y., Congreves, A.K., Schneider, K., Zaro, G.C., Nunesa, A.L.P., Zhang, H. and Voroney, R.P. 2021. The efect of agroecosystem management on the distribution of C functional groups in soil organic matter: A review. Biology Fertility Of Soil. 57:881–894. DOI 10.1007/s00374-021-01580-2

Audette, Y., Longstafe, J.G., Gillespie, A.W., Smith, D.S., Voroney, R.P. 2021. Validation and comparisons of NaOH and Na4P2O7 extraction methods for the characterization of organic amendments. Soil Sci Soc Am J 85:273–285. https://doi.org/10.1002/saj2.20195

Baah-Acheamfour, M.; Carlyle, C.N.; Bork, E.W.; Chang, S.X. 2014. Trees increase soil carbon and its stability in three agroforestry systems in central Alberta, Canada. For. Ecol. Manag. 328, 131–139.

Bedoya E., Aramburú C., Burneo Z. 2017. Unsustainable agriculture and the fallow crisis: the case of farmers in the valley of the Apurímac and the Ene rivers valley, VRAE. Anthropological XXXV, 38: 211–240.

Bhattacharyya R., Prakash V., Kundu S., Pandey S.C., Srivastva A.K., Gupta H.S. 2009. Effect of fertilisation on carbon sequestration in soybean-wheat rotation under two contrasting soils and management practices in the Indian Himalayas. Soil Research, 47: 592–601.

Birkeland P.W. 1984. Soil and Geomorphology, Oxford University Press, New York, 372

Bogunovic I., Pereira P., Kisic I., Sajko K., Sraka M. 2018. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160: 376–384

Casals, P.; Romero, J.; Rusch, G.M.; Ibrahim, M. 2014. Soil organic C and nutrient contents under trees with different functional characteristics in seasonally dry tropical silvopastures. Plant Soil, 374, 643–659.

Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E .2013. The microbial efciency matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995. https://doi.org/10.1111/gcb.12113

Danchenko NN, Artemyeva ZS, Kolyyagin YG, Kogut BM. 2020. Features of the chemical structure of diferent organic matter pools in Haplic Chernozem of the Streletskaya steppe: 13C MAS NMR study. Environ Res 191:110205

Darmawijaya, I. 1990. Klasifikasi Tanah, Dasar-dasar Teori Bagi Penelitian Tanah dan Pelaksanaan Penelitian. UGM Press, Yogyakarta.

Fialho, R.C.; Zinn, Y.L. 2014. Changes in soil organic carbon under eucalyptus plantations in brazil: A comparative analysis. Land Degrad. Dev. 437, 428–437.

Foth, H.D. and L.M. Turk. 1972. Fundamentals of Soil sciences. Willey Int. Edition

Gaston, L.; Blazier, M.; Beasley, J.; Dodla, S.; Felicien, W.; Clason, T. 2019. Silvopasture Switchgrass Fertilized with Poultry Litter: Nutrient Removal, Soil Fertility, and Runoff Water Quality. Commun. Soil Sci. Plant Anal. 50, 948–958.

Gillespie AW, Diochon A, Ma BL, Morrison MJ, Kellman L, Walley FL, Regier TZ, Chevrier D, Dynes JJ, Gregorich EG .2014. Nitrogen input quality changes the biochemical composition of soil organic matter stabilized in the fne fraction: a long-term Biology and Fertility of Soils (2021) 57:881–894 891 1 3 study. Biogeochemistry 117:337–350. https://doi.org/10.1007/ s10533-013-9871-z

Hadayanto, E., Muddarisna N. & Fiqri, A. 2017. Pengelolaan Kesuburan Tanah. UB Press. Malang

Hanafiah KA. 2007. Dasar-Dasar Ilmu Tanah. Raja Grafindo Persada. Jakarta.

Han L.F., Sun K., Yang Y., Xia X.H., Li F.B., Yang Z.F., Xing B.S. 2020. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma, 364: 114184.

Hardjowigeno S. 2010. Ilmu Tanah. Akademika Pressindo. Jakarta.

Hardjowigeno, S,. 2003. Ilmu Tanah. Penerbit Akademika Pressindo. Jakarta.

Hartemink, A.E. 2006. Soil Erosion: Perennial Crop Plantations. Encyclopedia of Soil Science, 1613-1617

Hoosbeek, M.R.; Remme, R.P.; Rusch, G.M. 2018. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 92, 263–273.

Huang Z.Q., Xu Z.H., Chen C.R. 2008. Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Applied Soil Ecology, 40: 229–239

Johnson J.M.-F., Franzluebbers A.J., Weyers S.L., Reicosky D.C. 2007. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150: 107–124.

Kharal S., Khanal B.R. & Panday, D. 2018. Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal. Soil System 2:1-8

Kharel, T.P.; Ashworth, A.J.; Owens, P.R.; Philipp, D.; Thomas, A.L.; Sauer, T.J. 2021. Teasing apart silvopasture system components using machine learning for optimization. Soil Syst. 5, 41.

Kidanemariam, A., Gebrekidan, H., Mamo, T., & Kibret, K. 2012. Impact of altitude and land use type on some physical and chemical properties of acidic soils in Tsegede Highlands, Northern Ethiopia. Open Journal of Soil Science, 2, 223–233.

Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013) Carbon–nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86. https:// doi.org/10.1016/j.soilbio.2013.01.011

Leifeld J, and Kögel-Knabner I .2005. Soil organic matter fractions as early indicators for carbon stock changes under diferent land–use? Geoderma 124:143–155. https://doi.org/10.1016/j.geoderma. 2004.04.009

Liu, Weixing., Xu, Wennhua., Han, Yi., Wang, Changhui., and Wan, Shigiang. 2007. Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe. Biology and Fertility of Soils. 44:259–268. DOI 10.1007/s00374-007-0198-6

Novotny EH, Turetta APD, Resende MF, Rebello CM. 2020. The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environ Pollut 266:115298

Odorlina, R, Situmorang, Simanjuntak. 2015. Kearifan Lokal Pengelolaan Hutan Oleh Masyarakat Sekitar Kawasan Ttaman Wisata Ala Sicike-Cike Sumatra Utara. Balai Penelitian Aek Nauli.

Paulino V.T., Neto M.S., Lima Celegato Teixeira E.M., Roncato Duarte K.M., Franzluebbers A.J. 2014. Carbon and nitrogen stocks of a Typic Acrudox under different land use systems in São Paulo State of Brazil. Journal of Plant Sciences, 2: 192–200.

Ping, C., Gary, J., Michaelson, Cynthia, A., Stiles, & González, G. 2013. Soil characteristics, carbon stores, and nutrient distribution in eight forest types along an elevation gradient, eastern Puerto Rico. Ecological Bulletins, 54, 67– 86.

Prabowo, R & Subantoro, R. 2017. Analisis Tanah Sebagai Indikator Tingkat Kesuburan Lahan Budidaya Pertanian di Kota Semarang. CENDEKIA EKSATA 2,2: 59-64

Priyono, K.W & Priyana Y. Kajian Tingkat Perkembangan Tanah Pada Kejadian Bencana Longsor Lahan Di Pegunungan Menoreh Kabupaten Kulonprogo Daerah Istimewa Yogyakarta. The 3rd Universty Research Colloquium 2016, 489-495

Purba, R.P.C, Sitorus, B & Sembirin, M. 2014. Kajian Kesuburan Tanah di Desa Sihiong, Sinar Sabungan dan Lumban Lobu Kecamatan Bonatua Lunasi Kabupaten Toba Samosir. Jurnal Online Agroekotekhnologi, 2,4 :1490-1499

Purwanto, Hartati, S., & Istiqomah, S. 2014. Pengaruh kualitas dan dosis seresah terhadap potensial nitrifikasi tanah dan hasil jagung manis. Sains Tanah-Jurnal Ilmu Tanah dan Agroklimatologi, 11(1), 11–20.

Pusat Penelitian Tanah & Agroklimat. 1983. Kriteria Penilaian Data Sifat Analisis Kimia Tanah, Balai Penelitian dan Pengembangan Pertanian, Departemen Pertanian, Bogor

Ramesh T., Bolan N.S., Kirkham M.B., Wijesekara H., Kanchikerimath M., Rao C.S., Sandeep S., Rinklebe J., Ok Y.S., Choudhury B.U., Wang H.L., Tang C.X., Wang X.J., Song Z.L., Freeman II O.W. 2019. Chapter one – soil organic carbon dynamics: impact of land use changes and management practices: a review. Advances in Agronomy, 156: 1–107.

Rui, Y.C., Wang, Y.F., Chen, C.R., Zhou. X.Q., & Wang, S.P. (2012). Warming andgrazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant and Soil, 357, 73–87.

Rusdiana, O., & Lubis, R.S. 2012. Pendugaan korelasi antara karakteristrik tanah terhadap cadangan karbon (carbon stock) pada hutan sekunder. Jurnal Silvikultur Tropika, 1, 14–21

Sari, N.P., Santoso, T.I., & Mawardi, S. 2013. Sebaran tingkat kesuburan tanah pada perkebunan rakyat kopi Arabika di dataran tinggi Ijen-Raung menurut ketinggian tempat dan tanaman penaung. Pelita Perkebunan, 29(2), 93–107.

Sauer, T.J.; Coblentz, W.K.; Thomas, A.L.; Brye, K.R.; Brauer, D.K.; Skinner, J.V.; Van Brahana, J.; DeFauw, S.L.; Hays, P.D.; Moffitt, D.C.; et al. 2014. Nutrient cycling in an agroforestry alley cropping system receiving poultry litter or nitrogen fertilizer. Nutr. Cycl. Agroecosyst. 101, 167–179.

Savarese C, Drosos M, Spaccini R, Cozzolino V, Piccolo A .2021. Molecular characterization of soil organic matter and its extractable humic fraction from long-term fled experiments under diferent cropping systems. Geoderma 383:114700

Sipahutar, A.H., Marbun, P., & Fauzi. 2014. Kajian C-organik, N dan P humitropepts pada ketinggian tempat yang berbeda di Kecamatan Lintong Nihuta. Jurnal Online Agroekoteknologi, 2(4), 1332–1338.

Stevenson, F.J. (1982) Humus Chemistry, Wiley, New York.

Sukarman K. & Dariah A. 2014. Tanah Andasol di Indonesia: Karakteristik, Potensi, Kendala dan Pengelolaannya untuk Pertanian. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian

Sulakhudin, Suswati, D. & Gafur, S. 2016. Kajian Status Kesuburan Tanah Pada Lahan Sawah di Kecamatan Sungai Kunyit Kabupaten Menpawah. Jurnal Pedon Tropika 1,3:106-114

Sumarni, N., Rosliani, R. & Duriat A.S. 2010. Pengelolaan Fisik, Kimia, dan Biologi Tanah untuk Meningkatkan Kesuburan Lahan dan Hasil Cabai Merah. J. Hort. 20, 2:130-137

Supriadi, H., Randriani, E. & Towaha, J. 2016. Korelasi Antara Ketinggian Tempat, Sifat Kimia Tanah dan Mutu Fisik Biji Kopi Arabika di Dataran Tinggi Garut. J. TIDP 3, 1: 45–52

Syekhfani. 2010. Hubungan Hara Tanah Air dan Tanaman. Dasar-Dasar

Pengelolaan Tanah Subur Berkelanjutan. PMN its Press, Malang

Downloads

Published

2023-05-26

Issue

Section

Articles