PEMANTAUAN DAN MITIGASI TINGKAT POTENSI BENCANA KEKERINGAN DI KOTA DUMAI

Authors

  • Eggy Arya Giofandi Universitas Negeri Padang
  • Dhanu Sekarjati Universitas Negeri Padang
  • Fitrah Andika Riyadhno Universitas Negeri Padang

DOI:

https://doi.org/10.31764/geography.v8i2.2456

Keywords:

Drought, Vegetation health index.

Abstract

Abstrak: Kekeringan lahan yang terjadi saat musim kemarau memberikan dampak buruk bagi vegetasi, salah satunya tanah Gambut sangat sensitif terhadap kenaikan suhu menimbulkan kebakaran hutan. Kota Dumai menjadi salah satu daerah yang sering mengalami kebakaran hutan dan lahan, efek terjadi kebakaran  ini menjadikan lahan tersebut memiliki kualitas yang menurun meliputi fisika, kimia, dan adanya erosi  tanah. Dalam tulisan  ini, kami memantau adanya peningkatan dan penuruan dalam beberapa kategori kekeringan lahan. Adapun parameter yang digunakan seperti Vegetation Health Index (VHI), Vegetation Condition Index (VCI), dan Temperature Condition Index (TCI) pada tahun 2013 dan tahun 2018. Hasil penelitian menjelaskan bahwa wilayah kekeringan mengalami kenaikan total selama periode pengamatan sebesar 23.119 ha lahan, dengan kategori tanpa kekeringan terjadi penurunan seluas 23.119 ha lahan, kemudian kategori kekeringan ringan terjadi peningkatan seluas 19.510 ha lahan, selanjutnya kategori kekeringan sedang terjadi peningkatan seluas 13.444 ha lahan, lalu kategori kekeringan parah terjadi penurunan seluas 9.163 ha lahan, dan kekeringan ekstrim mengalami penurunan seluas 672 ha lahan. hal ini sejalan dengan terjadinya kenaikan pada suhu tahun 2013 mencapai 38ºC  kemudian mengalami peningkatan menjadi 47,53ºC di tahun 2018 yang sedang mengalami kebakaran hutan dan lahan.

 

Abstract: Land drought that occurs during the dry season has a negative impact on vegetation, one of which is Peat soil is very sensitive to rising temperature causing forest fires. Dumai City is one of the areas that often experience forest and land fires, the effect of this fire makes the land has a declining quality including physics, chemistry, and the presence of soil erosion. In this paper, we monitor the increase and decline in several categories of land drought. The parameters used such as vegetation health index (VHI), vegetation condition index (VCI), and temperature condition index (TCI) in 2013 and 2018. The results of the study explain the drought area experienced a total increase during the observation period of 23.119 hectares of land, with the category without drought decreased by 23.119 ha, then the category of mild drought increased by 19.510 ha, then the category of drought was an increase of 13.444 ha, then the severe drought category decreased by 9.163 ha, and extreme drought decreased by 672 ha. this is in line with the increase in temperature in 2013 which reached 38 ºC and then increased to 47.53 º C in 2018 which is experiencing forest and land fires.

References

Adiningsih, S. E. (2014). Tinjauan metode deteksi parameter kekeringan berbasis data penginderaan jauh. Prosiding Seminar Nasional Penginderaan Jauh 2014, 210–220.

Agnihotri, A. K. (2018). Impact of Green Spaces on the Urban Microclimate through Landsat 8 and TIRS Data, in Varanasi, India. International Journal of Environment and Sustainability, 7(2). https://doi.org/10.24102/ijes.v7i2.913

Andujar, E., Krakauer, N. Y., Yi, C., & Kogan, F. (2017). Ecosystem Drought Response Timescales from Thermal Emission versus Shortwave Remote Sensing. Advances in Meteorology, 2017(Vci). https://doi.org/10.1155/2017/8434020

Bento, V. A., Trigo, I. F., Gouveia, C. M., & DaCamara, C. C. (2018). Contribution of Land Surface Temperature (TCI) to Vegetation Health Index: A comparative study using clear sky and all-weather climate data records. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091324

Bhuiyan, C. (2008). Desert vegetation during droughts: Response and sensitivity. The International Archies of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (8), 907–912.

Dhawale, R., & Paul, S. K. (2018). A comparative analysis of drought indices on vegetation through remote sensing for Latur region of India. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(5), 403–407. https://doi.org/10.5194/isprs-archives-XLII-5-403-2018

García-león, D., & Contreras, S. (2016). Measuring drought sensitivity of Spanish crop yields. (June), 1–11.

Kogan, F. (2002). World droughts in the new millennium from avhrr-based vegetation health indices. Eos, 83(48), 3–7. https://doi.org/10.1029/2002EO000382

Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., & Lebed, L. (2003). AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity: Calibration and validation. Photogrammetric Engineering and Remote Sensing, 69(8), 899–906. https://doi.org/10.14358/PERS.69.8.899

Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-1177(95)00079-T

Krzhizhanovskaya, V. V., Groen, D., Bozak, B., & Hoekstra, A. G. (2015). Multiscale Modelling and simulation workshop: 12 years of inspiration. Procedia Computer Science, 51(1), 1082–1087. https://doi.org/10.1016/j.procs.2015.05.268

Sholihah, R. I., Trisasongko, B. H., Shiddiq, D., Iman, L. O. S., Kusdaryanto, S., Manijo, & Panuju, D. R. (2016). Identification of Agricultural Drought Extent Based on Vegetation Health Indices of Landsat Data: Case of Subang and Karawang, Indonesia. Procedia Environmental Sciences, 33, 14–20. https://doi.org/10.1016/j.proenv.2016.03.051

Wilhite, D. A., & Glantz, M. H. (2019). Understanding the drought phenomenon: The role of definitions. Planning for Drought: Toward A Reduction of Societal Vulnerability, 11–27. https://doi.org/10.4324/9780429301735-2

Published

2020-09-02

Issue

Section

Articles