Number of Foreign Tourists and Indonesians in Bangka Belitung: A Prediction Using EMA Method
DOI:
https://doi.org/10.31764/jseit.v1i2.8278Keywords:
Forecasting, Number of Tourists, EMA methodAbstract
Abstract: From year to year the number of foreign tourists and tourists to Bangka Belitung has experienced ups and downs, based on data obtained from BPS obtained fluctuating charts. To find out the number of arrivals of foreign tourists and tourists to Bangka Belitung, the time series prediction method is the Exponential Moving Average (EMA) method. In making predictions, there needs to be a pararameter used to assess how good the method is. Therefore, mad, MAPE, and MSE parameters are used. To solve the problem, of course, it is necessary to calculate the necessary components including determining the alpha value (α). So that obtained the value of α that minimizes in foreign tourists, namely α = 0.9 with MAD=769.6955, MSE=951.178.9769, and MAPE=82.4694 with the predicted result for 2020 as much as 1.3% decreased. While the value of α that minimizes in indonesian tourists is α = 0.9 with MAD = 27,946,8487, MSE = 1,198,441,984.8638, and
MAPE= 18.8662 with predicted results for 2020 as much as 0.41% decreased.
Â
Abstrak: Dari tahun ke tahun jumlah pengunjung wisatawan mancanegara dan wisatawan nusantara ke Bangka Belitung mengalami pasang surut, berdasarkan data yang diperoleh dari BPS diperoleh grafik yang fluktuatif. Untuk mengetahui jumlah kedatangan wisatawan mancanegara dan wisatawan nusantara ke Bangka Belitung digunakan metode prediksi time series yakni metode Exponential Moving Average (EMA). Dalam melakukan prediksi, perlu adanya suatu pararameter yang digunakan untuk menilai seberapa baik metode tersebut. Oleh karena itu digunakan parameter MAD, MAPE, dan MSE. Untuk menyelesaikan permasalahan, tentunya perlu dihitung komponen-komponen yang diperlukan termasuk menentukan nilai alpha (α). Sehingga diperoleh nilai α yang meminimumkan pada wisatawan mancanegara yaitu α = 0.9 dengan MAD=769,6955, MSE=951.178,9769, dan MAPE=82,4694 dengan hasil prediksi untuk tahun 2020 sebanyak 1,3% mengalami penurunan. Sedangkan nilai α yang meminimumkan pada wisatawan nusantara yaitu α = 0.9 dengan MAD= 27.946,8487, MSE= 1.198.441.984,8638, dan MAPE=  18,8662
dengan hasil prediksi untuk tahun 2020 sebanyak 0,41% mengalami penurunan.
References
Sari.E.N., Bambang Susanto A S, 2021 Perbandingan Hasil Peramalan Jumlah Wisatawan
Mancanegara Dengan Metode Box-Jenkins Dan Exponential Smoothing. JAMBURA J. Probab.
Stat. 2(1). 1–13.
Subartini.B., Supriatna.A.,Hertini E Aridin L and Pendahuluan A, 2017 Prediksi jumlah kedatangan
wisatawan mancanegara ke jawa barat menggunakan metode trend kubik p. 265–272.
Sucipto L and Syaharuddin S, 2018 Konstruksi Forecasting System Multi-Model untuk pemodelan
matematika pada peramalan Indeks Pembangunan Manusia Provinsi Nusa Tenggara Barat Regist.
J. Ilm. Teknol. Sist. Inf. 4, 2 p. 114.
Florencia S and Suryadibrata A, 2020 Prediksi Kedatangan Turis Menggunakan Algoritma Weighted
Exponential Moving Average Ultim. J. Tek. Inform. 12, 2 p. 129–132.
Deswita.D.R., Abdul Hoyyi T W, 2020 Pemodelan Metode Brown’s Double Exponential Smoothing
(B-Des) Dan Brown’s Weighted Exponential Moving Average (B-Wema) Menggunakan
| Journal of Sharia Economy and Islamic Tourism | Vol. 1, No. 2, Maret 2021, Hal. 1-12
Optimasi Levenberg-Marquardt Pada Jumlah Wisatawan Di Jawa Tengah Dilla J. Chem. Inf.
Model. 9, 3 p. 316–325.
Kusumah E P Kusnendi K and Sari M, 2020 Intensi Pemilihan Wisata Berkelanjutan di Pulau Belitung:
Pengetahuan Pariwisata Sebagai Variabel Moderasi J. Ekon. Bisnis dan Kewirausahaan 9, 1 p. 1–
Kumila A Sholihah B Evizia E Safitri N and Fitri S, 2019 Perbandingan Metode Moving Average dan
Metode Naïve Dalam Peramalan Data Kemiskinan J. Teor. dan Apl. Mat. 3, 1 p. 65–73.
Wardah, S., & Iskandar, I. (2017). Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan
Bungkus (Studi Kasus : Home Industry Arwana Food Tembilahan). J@ti Undip : Jurnal Teknik
Industri. https://doi.org/10.14710/jati.11.3.135-142.
Robial, S. M. (2018). Perbandingan Model Statistik pada Analisis Metode Peramalan Time Series
(Studi Kasus: PT. Telekomunikasi Indonesia, Tbk Kandatel Sukabumi). Jurnal Ilmiah SANTIKA.
Silalahi, Desri Kristina. 2020. “Forecasting of Poverty Data Using Seasonal ARIMA Modeling in
West Java Province.†JTAM (Jurnal Teori dan Aplikasi Matematika) 4(1), pp. 76-86.
S. Hansun. 2016. “A New Approach of Brown’s Double Exponential Smoothing Method in Time
Series Analysisâ€. Journal Of Electrical & Computer Engineering 4(2): 75-78.
LIU Shufen, GU Songyuan and BAO Tie. 2017. “An Automatic Forecasting Method for Time Seriesâ€.
Chinese Journal of Electronics 26(3): 445-452.
Hansun, Seng, Vincent Charles, Christiana Rini Indrati, Subanar. 2019. “Revisiting the Holt-Winters’
Additive Method for Better Forecasting. International Journal of Enterprise Information Systems
(2): 43-44.
Vanovski, Zorani, Ace Milenkovski, Zoran Narasanov. 2018. “Time Series Forecasting Using A
Moving Average Model For Extrapolation Of Number Of Touristâ€. UTMS Journal of Economics
(2): 121–132.
Sari, Y., & HANAN PAMUNGKAS, Y. (2018). Perkembangan Pariwisata Ziarah Di Makam Asta
Tinggi Sumenep Dari Tahun 2006-2016. Avatara
Downloads
Published
Issue
Section
License
Authors who publish articles in Journal of Sharia Economy and Islamic Tourism agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).