Application of Markov Chain to Prediction Poverty in Banten Province
DOI:
https://doi.org/10.31764/jtam.v7i1.10057Keywords:
Poverty, Prediction, Probability, Markov chain.Abstract
The number of poor people in Banten Province is in the third lowest position in Java Island under the Special Region Province of the Capital Jakarta and Yogyakarta Special Region Province in 2018-2020 until finally it is in the second lowest position in 2021. However, this does not mean that the problem of poverty is no longer a top priority. This study aims to apply the Markov chain in predicting poverty in Banten Province. According to Marli et al. (2018) The Markov chain is a method that studies the properties of a variable in the present based on its past properties to estimate the properties of these variables in the future. In this research, the type of research used is applied research and used secondary data sourced from the Central Statistics Agency (BPS) Banten Province. The poverty prediction results for Pandeglang Regency in 2022, 2023 and 2024-2025 will increase by 2%, 0.46%, and 0.02%, respectively. Lebak Regency in 2022 will increase by 2%, in 2023 and in 2024-2025 it will decrease by 0.66% and 0.01%, respectively. Tangerang Regency in 2022 will decrease by 4%, in 2023 it will increase by 0.99%, and will fall back in 2024-2025 by 0.01%. Serang Regency in 2022 will increase by 1%, in 2023-2025 it will decrease by 0.83%. Tangerang City in 2022 remains, in 2023 and 2024-2025 it will increase by 0.53% and 0.01%, respectively. The city of Cilegon in 2022 remains, in 2023 it will increase by 0.18% and 2024-2025 will decrease by 0.01%. Serang City in 2022 remains, in 2023-2025 it will decrease by 0.71%. South Tangerang City in 2022 will decrease by 1%, in 2023-2025 it will increase by 0.04%. The steady state probability of Pandeglang Regency is 17.48%, Lebak Regency is 17.33%, Tangerang Regency is 27.98%, Serang Regency is 10.17%, Tangerang City is 15.54%, Cilegon City is 2.17%, Serang City is 5.29% and South Tangerang City is 4.04%..References
Allo, D. G., Hatidja, D., & Paendong, M. (2013). Analisis Rantai Markov untuk Mengetahui Peluang Perpindahan Merek Kartu Seluler Pra Bayar GSM ( Studi Kasus Mahasiswa Fakultas Pertanian Unsrat Manado ). 2(1), 17–22.
Badan Pusat Statistik. (2021). Statistik Indonesia 2021 (Direktorat Diseminasi Statistik (ed.)). Badan Pusat Statistik.
Badan Pusat Statistik Provinsi Banten. (2021). Indikator Kesejahteraan Rakyat Provinsi Banten 2021 (Badan Pusat Statistik Provinsi Banten (ed.)). Badan Pusat Statistik Provinsi Banten.
Gopal, P. S., Alnaufal, M., Rahman, A., Malek, N. M., & Singh, P. (2021). Kemiskinan Adalah Satu Fenomena Multidimensi : Suatu Pemerhatian Awal. Malaysian Journal of Social Sciences and Humanities (MJSSH), 6(1), 40–51.
Hamid, A. (2018). Agar Terhindar Dari Kemiskinan (Z. Malik (ed.)). Laksana.
Hidayatiningtias, A. (2021). Peran Pemerintah Daerah dalam Pelaksanaan Program Jaminan Sosial Rakyat Banten Bersatu ( Jamsosratu ). 1(2), 86–96.
Kartika, R. S., Wardani, D. K., Darmila, Ginting, I., Sukarsiyah, D., Mardhatillah, M., Abarua, W. B., Pribadi, M. A., & Siregar, A. (2021). Laporan Kajian Inovasi Sosial Khususnya Kemiskinan (Asrosi (ed.)). Bina Praja Press.
Maipita, I. (2013). Memahami Dan Mengukur Kemiskinan (M. Arief (ed.)). Absolute Media.
Marli, Z., Kesuma, Rusdiana, S., Rahayu, L., & Fradinata, E. (2018). pengantar biostatistika dan aplikasinya pada status kesehatan gizi remaja (H. Sofyan (ed.)).
Massalesse, J. (2016). Penerapan Teorema Perron-Frobenius pada Penentuan Distribusi Stasioner Rantai Markov. 13(1), 85–90.
Nasution, A. H. (2022). Model Manajemen Perilaku Lingkungan Hidup Pada Komunitas Sekolah (Syofrianisda (ed.); 1st ed.). CV. Azka Pustaka.
Novianti, A., Humairoh, N. L., & Harahap, R. N. (2021). Analisis Peluang Naiknya Kasus COVID-19 Provinsi di Pulau Jawa dengan Pendekatan Rantai Markov. Jurnal Statistika Dan Aplikasinya, 5(2), 230–242.
Prawirosentono, S. (2019). Riset Operasi Dan Ekonofisika (R. A. Kusumaningrum (ed.); 1st ed.). Sinar Grafika Offset.
RL, & Ross, S. M. (1998). Introduction to Probability Models. In Journal of the American Statistical Association (Vol. 93, Issue 441). https://doi.org/10.2307/2669658
Santoso, D. (2018). Penduduk Miskin Transient: Masalah Kemiskinan Yang Terabaikan (1st ed.). Yayasan Pustaka Obor Indonesia.
Setyawan, Y., Noeryanti, & Hadinegara. (2019). Memprediksi Kemiskinan di Provinsi Daerah Istimewa Yogyakarta Menggunakan Metode Analisis Rantai Markov. Jurnal Teknologi, 12(1), 45–53.
Sriyana. (2021). Masalah Sosial Kemiskinan, Pemberdayaan dan Kesejahteraan Sosial (Effrata (ed.)). CV. Literasi Nusantara Abadi.
Sukesi, K. (2015). Gender & Kemiskinan Di Indonesia (K. Sukesi (ed.)). Universitas Brawijaya Press.
Titioka, B. M., S.Latumahina, F., Ralahallo, F. N., Patty, M., Rijoly, J. C. D., & Alfons, C. R. (2021). Mengurai Kemiskinan Di Kota Ambon (G. Persullesy (ed.)). CV. Adanu Abimata.
Wahyuningrum, S. R. (2020). Statistika Pendidikan (Konsep Data Dan Peluang) (M. C. Wardi (ed.)). CV. Jakad Media Publshing.
Wijayanti, I. E., Wahyuni, S., & Susanti, Y. (2018). Dasar-Dasar Aljabar Linear Dan Penggunaannya Dalam Berbagai Bidang (Rusian (ed.)). Gadjah Mada University Press.
Yunus, R., & Radjab, M. (2018). Analisis Pengentasan Kemiskinan Studi Kasus Pada Program Pemerintah Kabupaten Pangkajene dan Kepulauan (A. K. Muzakkir (ed.)). CV. Social Politic Genius.
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).