Strategi Pembuktian Matematis Mahasiswa Pada Soal Geometri
DOI:
https://doi.org/10.31764/jtam.v1i1.101Keywords:
Strategi, Pembuktian, GeometriAbstract
Abstrak: Penelitian kualitatif ini bertujuan untuk mengungkap strategi yang digunakan mahasiswa dalam melakukan pembuktian soal Geometri. Subjek dalam penelitian ini adalah mahasiswa yang telah menempuh mata kuliah Geometri. Pengumpulan data dilakukan dengan menggunakan metode tes dan wawancara. Hasil penelitian menunjukkan bahwa strategi pembuktian pada soal Geometri dengan tipe pembuktian sintaksis (syntactic proof production) antara lain adalah dengan mengidentifikasi dan memanipulasi pernyataan atau informasi dalam soal, menterjemahkan informasi dalam soal, memilih teorema atau dalil yang relevan, menggunakan simbol atau notasi matematika yang formal dalam melakukan tahapan pembuktian, menggunakan bantuan sketsa, dan menarik kesimpulan dari setiap pernyataan yang telah didapatkan. Sementara strategi pembuktian pada soal Geometri dengan tipe pembuktian semantik (semantic proof production) antara lain adalah dengan menggunakan intuisinya untuk membuat asumsi, dugaan atau perkiraan yang dianggap benar dan melakukan penalaran atas asumsi yang dibuat dan menggunakan sketsa untuk membantu memudahkan pembuktian.
Abstract: Â This qualitative research aims to reveal the strategies that used by students in doing the proof of Geometry. The subjects in this study are students who have taken courses of Geometry. Data is collected through test and interview. The research shows that the strategy of proof of geometry with syntactic proof production type are identifying and manipulating the statement or information in the question, translating the information in the question, choosing the relevant theorem, using formal mathematical symbol or notation in conducting the proof stage, using a sketch, and making a conclusions from every statement that has been obtained. The strategy of proof of geometry with semantic proof production are using his intuition to make assumptions, guesses or estimates that are considered correct and reasoning and using sketches to help facilitate proof.References
Abdussakir. (2014). Proses Berpikir Mahasiswa dalam Menyusun Bukti Matematis dengan Strategi Semantik. Jurnal Pendidikan Sains, 2(3), 132-140
Alexander, D.C, Koeberlein, G.M. (2015). Elementary Geometry for College Students Sixth Edition. USA: Cencage Learning.
Azwar, S. (2007). Metode Penelitian. Yogyakarta: Pustaka Pelajar.
Balacheff, N. (2010). Bridging Knowing and Proving in Mathematics: A Didactical Perspective. Dalam Hanna,G. (eds). Explanation and Proof in Mathematics: Philosophical and Educational Perspectives. New York: Springer
Blanton, M., Stylianou, D. dan David, M. (2010). The Nature of scaffolding in Undergraduate Transition to Formal Proof. Dalam Pateman, N. (eds). Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education, 2, 113-120, Honolulu, HI
Cheng, Ying-Hao & Lin, Fou-Lai. (2009). Developing Learning Strategies for Enhancing Below Average Students’ Ability in Constructing Multi-Step Geometry Proof. Dalam Lin, Fou-Lai (eds). Proceeding of The ICMI Study 19 Conference: Proof and Proving in Mathematics Education, Vol. 1. Taipei: The Department of Mathematics, National Taiwan Normal University
Epp, S.S. (2003). The Role of Logic in Teaching Proof. The American Mathematical Monthly, 110(10):886-899. Pernyataan yang sama juga disampaikan oleh Weber, K. 2001. Student Difficulty in Constructing Proof: The Need for Strategic Knowledge. Educational Studies in Mathematics, 48(1), 101-109
Kogce, D., Aydin, M. & Yildiz. (2010). C. The Views of High School Student about Proof and Their Levels of Proof (The Case of Trabzon). Procedia Social and Behavioral Sciences, 2, 2544-2549,
Moleong, L. J. (2012). Metodologi penelitian kualitatif. Bandung: Remaja Rosdakaya.
Pfeiffer, K. (2011). Features and Purposes of Mathematical Proofs in the View of Novice Student: Observation from Proof Validation and Evaluation Performances. PhD Dissertation (unpublished) of School of Mathematic, Statistics and Applied Mathematics. Galway: National University of Ireland.
Stylianides, A. (2007). The Notion of Proof in The Context of Elementary School Mathematics. Educational Studies in Mathematics, 65(1), 1-20
Weber, K. (2003). Students’ difficulties with proof. MAA Online: Research Sampler, diakses di https://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof
Weber, K. (2004). A Framework for Describing the Processes that Undergraduates Use to Construct Proofs. Proceeding of The 28th Conference of International Group for the Psychology of Mathematics Education, 4, 425-432
Weber, K. & Alcock, L. (2004). Semantic and Syntactic Proof Productions. Educational Studies in Mathematics, 56, 209–234.
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).