Forecasting the Number of Ship Passengers with SARIMA Approach (A Case Study: Semayang Port, Balikpapan City)

Authors

  • Multiningsih Multiningsih Department Mathematics, Universitas Islam Negeri Walisongo Semarang
  • Emy Siswanah Department Mathematics, Universitas Islam Negeri Walisongo Semarang http://orcid.org/0000-0003-3717-0989
  • Minhayati Saleh Department Mathematics, Universitas Islam Negeri Walisongo Semarang

DOI:

https://doi.org/10.31764/jtam.v6i4.10211

Keywords:

Forecasting, SARIMA, MAPE.

Abstract

From year to year, the number of ship passengers at Semayang Port, Balikpapan city tends to fluctuate. It also doubles in certain months and repeats every year. Sea transportation companies need to make forecasts in order to implement policies related to predict the number and capacity of ships that need to be provided as well as the preparation of port facilities. The study aims at obtaining the best model, predicting and determining the accuracy of the forecasting results for the number of passengers arriving and departing at Semayang Port, Balikpapan city using SARIMA method. The SARIMA method is a time series data forecasting method that is able to identify seasonal patterns. The results showed that the best model for predicting the number of passengers departing at Semayang Port, Balikpapan city is the SARIMA (4,1,0)(0,1,2)12 model with a MAPE of 14.05%. It means that the SARIMA model used produces good forecasting. Meanwhile, the best model to predict the number of passengers coming to Semayang Port Balikpapan city is the SARIMA (0,1,1)(2,1,0)12 model with a MAPE value of 3.27% which exposes that the SARIMA model used succeed to provide accurate forecasting. The results of this forecast can be used as a reference for the government or port managers to anticipate a surge in passengers. The government or port management can prepare an adequate amount of transportation in certain months to avoid the accumulation of passengers and to make sea transportation more efficient.

 

References

Andalita, I., & Irhamah. (2015). Peramalan Jumlah Penumpang Kereta Api Kelas Ekonomi Kertajaya Menggunakan ARIMA dan ANFIS. Jurnal Sains Dan Seni ITS, 4(2), 311–316.

Andini, T. D., & Sunyoto, R. M. (2018). Sistem Peramalan Jumlah Penumpang Kapal Laut di Pelabuhan Tanjung Perak Surabaya Menggunakan Triple Eksponensial Smoothing Berbasis Android. Jurnal Sistem Dan Teknologi Informasi, 4(2), 113–124.

ArunKumar, K. E., Kalaga, D. V., Sai Kumar, C. M., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Averag. Applied Soft Computing, 103(December 2019), 107161. https://doi.org/10.1016/j.asoc.2021.107161

Awang, N., Samy, G. A. N., Hassan, N. H., Maarop, N., & Perumal, S. (2022). Implementation of SARIMA Algorithm in Understanding Cybersecurity Threats in University Network. Turkish Online Journal of Qualitative Inquiry (TOJQI), 6(3), 8442–8451.

Baco, E., Lamusa, F., & Nurfadhilah, K. (2018). Peramalan Jumlah Penumpang Pada PT. Angkasa Pura I (Persero) Kantor Cabang Bandar Udara Internasional Sultan Hasanuddin Makassar. Jurnal Matematika Dan Statistika Serta Aplikasinya, 6(24–29).

Bas, M. del C., Ortiz, J., Ballesteros, L., & Martorell, S. (2017). Evaluation of a multiple linear regression model and SARIMA model in forecasting 7Be air concentrations. Chemosphere, 177, 326–333. https://doi.org/10.1016/j.chemosphere.2017.03.029

BPS. (2019). Kota Balikpapan dalam Angka 2019. Badan Pusat Statistik (BPS) Kota Balikpapan.

Chatfield, C. (2000). Time Series Forecasting. Chapman & Hall/CRC.

Darma, I. W. A. S., Gunawan, I. P. E. G., & Sutramiani, N. P. (2020). Peramalan Jumlah Kunjungan Wisatawan Menggunakan Triple Exponential Smoothing. Jurnal Ilmiah Merpati, 8(3), 2011–2021.

Dindarloo, S., Hower, J. C., Trimble, A. S., Bagherieh, A., & Trimble, A. S. (2016). Fundamental evaluation of petrographic effects on coal grindability by seasonal autoregressive integrated moving average (SARIMA). International Journal of Mineral Processing, 154, 94–99. https://doi.org/10.1016/j.minpro.2016.07.005

Falatouri, T., Darbanian, F., Brandtner, P., & Udokwu, C. (2022). Predictive Analytics for Demand Forecasting - A Comparison of SARIMA and LSTM in Retail SCM. Procedia Computer Science, 200(2019), 993–1003. https://doi.org/10.1016/j.procs.2022.01.298

Farida, Y., Yusi, S., & Yuliati, D. (2021). Peramalan Jumlah Penumpang Pesawat di Bandar Udara Internasional Juanda Menggunakan Metode Exponential Smoothing Event-Based. Barekeng Jurnal Ilmu Matematika Dan Terapan, 15(4).

Fatimah, S. (2019). Pengantar Transportasi. Myria Publisher.

Fitria, V. A., & Hartono, R. (2017). Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing. Jurnal Ilmiah Teknologi Informasi Asia, 11(1), 15–20.

He, K., Ji, L., Wu, C. W. D., & Tso, K. F. G. (2021). Using SARIMA–CNN–LSTM approach to forecast daily tourism demand. Journal of Hospitality and Tourism Management, 49(August), 25–33. https://doi.org/10.1016/j.jhtm.2021.08.022

Herjanto, E. (2007). Manajemen Operasi. Edisi Ketiga. Grasindo.

Hu, W., Tong, S., Mengersen, K., & Connell, D. (2007). Weather Variability and the Incidence of Cryptosporidiosis: Comparison of Time Series Poisson Regression and SARIMA Models. Annals of Epidemiology, 17(9), 679–688. https://doi.org/10.1016/j.annepidem.2007.03.020

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting Principles and Practice (Second). Otexts.

Kokilavani, S., & dkk. (2020). Sarima Modelling and Forecasting of Monthly Rainfall Pattern for Coimbatore, Tamil Nadu, India. Journal of Applied Science and Technology, 39(8), 69–76.

Kumar Dubey, A., Kumar, A., García-Díaz, V., Kumar Sharma, A., & Kanhaiya, K. (2021). Study and analysis of SARIMA and LSTM in forecasting time series data. Sustainable Energy Technologies and Assessments, 47(May), 101474. https://doi.org/10.1016/j.seta.2021.101474

Liu, H., Li, C., Shao, Y., Zhang, X., Zhai, Z., Wang, X., Qi, X., Wang, J., Hao, Y., Wu, Q., & Jiao, M. (2020). Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011–2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Journal of Infection and Public Health, 13(2), 287–294. https://doi.org/10.1016/j.jiph.2019.12.008

Liu, J., Zhao, Z., Zhong, Y., Zhao, C., & Zhang, G. (2022). Prediction of the dissolved gas concentration in power transformer oil based on SARIMA model. Energy Reports, 8, 1360–1367. https://doi.org/10.1016/J.EGYR.2022.03.020

Makridakris, S., Wheelwright., S. C., & Hynmand, R. J. (1997). Forecaseting Method and Application (Third). John Wiley & Sons. Inc.

Malki, A., Atlam, E.-S., Hassanien, A. E., Ewis, A., Dagnew, G., & Gad, I. (2022). SARIMA model-based forecasting required number of COVID-19 vaccines globally and empirical analysis of peoples’ view towards the vaccines. Alexandria Engineering Journal, 61(12), 12091–12110. https://doi.org/10.1016/j.aej.2022.05.051

Mao, Q., Zhang, K., Yan, W., & Cheng, C. (2018). Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Journal of Infection and Public Health, 11(5), 707–712. https://doi.org/10.1016/j.jiph.2018.04.009

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting (Second). John Wiley & Sons, Inc.

Muthu, N. S., Kannan, K. S., Deneshkumar, V., & Thangasamy, P. (2021). SARIMA Model for Forecasting Price Indices Fluctuations. European Journal of Mathematics and Statistics, 2(6), 1–6. https://doi.org/10.24018/ejmath.2021.2.6.67

Nasution, M. N. (2015). Manajemen Transportasi. Edisi keempat. Ghalia Indonesia.

Negara, R. I. P. (2021). Peramalan Jumlah Penumpang Kapal di Pelabuhan Pantai Baru dengan Metode Sarima dan Winter’s Exponential Smoothing. Jurnal Statistika Terapan, 1(1).

Oktaviarina, A. (2017). Peramalan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Exponential Smoothing. Buana Matematika Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 7(2).

Pangestu, C. J., Piantari, E., & Munir. (2020). Prediction of Diarrhea Sufferers in Bandung with Seasonal Autoregressive Integrated Moving Average (SARIMA). Journal of Computers for Society, 1(1), 61–79.

Permanasari, A. E., Hidayah, I., & Bustoni, I. A. (2013). SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence. Proceedings - 2013 International Conference on Information Technology and Electrical Engineering: “Intelligent and Green Technologies for Sustainable Developmentâ€, ICITEE 2013, 2, 203–207. https://doi.org/10.1109/ICITEED.2013.6676239

Perone, G. (2022). Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries. Econometrics, 10(2). https://doi.org/10.3390/econometrics10020018

Prabhadika, I. P. Y., Tastrawati, N. K. T., & Harini, L. P. I. (2018). Peramalan Persediaan Infus Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) pada Rumah Sakit Umum Pusat Sanglah. Jurnal Matematika, 7(2), 129–133.

Putra, A. P., Sitompul, M. K., Mardalena, T., & Romadani. (2022). Analisis Keterkaitan Transportasi Laut dengan Pelabuhan Kargo Teluk Dalam untuk Menunjang Kegiatan Perekonomian Masyarakat Penyalai Kecamatan Kuala Kampar Provinsi Riau. Jurnal Jalasena, 3(2).

Rosadi, D. (2012). Ekonometrika dan Analisis Runtun Waktu Terapan dengan Eviews. CV Andi Offset.

Salim, A. A. (2016). Manajemen Transportasi. PT. Raja Grafindo Persada.

Shen, S., & Chen, S. (2017). Application of <i>SARIMA</i> Model on Money Supply. Open Journal of Statistics, 07(01), 112–121. https://doi.org/10.4236/ojs.2017.71009

Soelaeman, I. (2016). Analisis Runtun Waktu. Universitas Terbuka.

Sofiana, Suparti, Hakim, A. R., & Triutami, I. (2020). Peramalan Jumlah Penumpang Pesawat di Bandara Internasional Ahmad Yani dengan Metode Holt Winter’s Exponential Smoothing dan Metode Exponential Smoothing Event Based. JURNAL GAUSSIAN, 9(4), 535–545.

Tadesse, K. B., & Dinka, M. O. (2017). Application of SARIMA model to forecasting monthly flows in Waterval River South Africa. Journal of Water and Land Development, 35(X–XII), 229–236.

Xu, S., Chan, H. K., & Zhang, T. (2019). Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach. Transportation Research Part E: Logistics and Transportation Review, 122(December 2018), 169–180. https://doi.org/10.1016/j.tre.2018.12.005

Yusof, F., & Kane, I. L. (2012). Modeling monthly rainfall time series using ETS state space and SARIMA models. International Journal of Current Research, 4(09), 1–6.

Published

2022-10-08

Issue

Section

Articles