Asymptotic Distribution of an Estimator for Variance Function of a Compound Periodic Poisson Process with Power Function Trend

Authors

  • Muhammad Wiranadi Utama Mathematics Department, IPB University
  • I Wayan Mangku Mathematics Department, IPB University
  • Bib Paruhum Silalahi Mathematics Department, IPB University

DOI:

https://doi.org/10.31764/jtam.v6i4.10213

Keywords:

Power Function, Estimator, Compound Periodic, Poisson Process, Asymptotic Distribution.

Abstract

In this paper, an asymptotic distribution of the estimator for the variance function of a compound periodic Poisson process with power function trend is discussed. The periodic component of this intensity function is not assumed to have a certain parametric form, except it is a periodic function with known period. The slope of power function trend is assumed to be positive, but its value is unknown. The objectives of this research are to modify the existing variance function estimator and to determine its asymptotic distribution. This research begins by modifying the formulation of the variance function estimator. After the variance function is obtained, the research is continued by determining the asymptotic distribution of the variance function estimator of the compound periodic Poisson process with a power function trend. The first result is modification of existing estimator so that its asymptotic distribution can be determined. The main result is asymptotic normality of the estimator of variance function of a compound periodic Poisson process with power function trend.

References

Abdullah, S., Mangku, I. W., & Siswadi. (2017). Estimation of the variance function of a compound cyclic poisson process in the presence of linear trend. Far East Journal of Mathematical Sciences, 102(3), 559–572. https://doi.org/10.17654/MS102030559

Adriani, I. R. (2019). Sebaran asimtotik penduga fungsi nilai harapan dan fungsi ragam proses Poisson periodik majemuk. Bogor (ID): Institut Pertanian Bogor. https://doi.org/.1037//0033-2909.I26.1.78

Belitser, E., Serra, P., & van Zanten, H. (2015). Rate-optimal Bayesian intensity smoothing for inhomogeneous Poisson processes. Journal of Statistical Planning and Inference, 166, 24–35. https://doi.org/10.1016/j.jspi.2014.03.009

Bening, V. E., & Korolev, V. Y. (2002). Generalized Poisson Models and their Applications in Insurance and Finance. Generalized Poisson Models and Their Applications in Insurance and Finance. https://doi.org/10.1515/9783110936018

Byrne, J. (1969). Properties of compound poisson processes with Applications in statistical physics. School of Mathematical and Physical Sciences, University of Sussex, Brighton, Sussex, England, 41, 575–587.

Engle, R. F. (2000). The econometrics of ultra-high-frequency data (pp. 68 (1):1–22.).

Fajri, A. (2018). Pendugaan fungsi ragam pada proses poisson periodik majemuk dengan tren fungsi pangkat. Bogor (ID): Institut Pertanian Bogor.

Fitria, U. A. (2017). Sebaran asimtotik penduga fungsi nilai harapan dan fungsi ragam proses poisson majemuk dengan intensitas fungsi pangkat. Bogor (ID): Institut Pertanian Bogor.

Kegler, S. R. (2007). Applying the compound Poisson process model to the reporting of injury-related mortality rates. Epidemiologic Perspectives and Innovations, 4, 1–9. https://doi.org/10.1186/1742-5573-4-1

Lewis, P. A. W. (1971). Recent Results in the Statistical Analysis of Univariate Point Processes. In Stochastic Point Processes: Statistical Analysis, Theory, and Applications (Ed. Lewis PAW). 1–54.

Makhmudah, F. I., Mangku, I. W., & Sumarno, H. (2016). Estimating the variance function of a compound cyclic poisson process. Far East Journal of Mathematical Sciences, 100(6), 911–922. https://doi.org/10.17654/MS100060911

Mangku, I. W. (2001). Estimating the Intensity of a Cyclic Poisson Process. PhD Thesis. Amsterdam (NL): Univ of Amsterdam.

Mangku, I. W. (2017). Estimating the intensity of a cyclic Poisson process in the presence of additive and multiplicative linear trend. Journal of Physics: Conference Series, 893(1). https://doi.org/10.1088/1742-6596/893/1/012023

Mangku, I. W., & Purnaba, I. G. P. (2014). Statistical properties of an estimator for the mean function of a compound cyclic Poisson process. Far East Journal of Mathematical Science., 82(2), 227–237.

Mangku, I. W., Sakinah, F., & Ruhiyat. (2016). Estimating the mean and variance functions of a compound poisson process having power function intensity. Far East Journal of Mathematical Sciences, 100(9), 1455–1465. https://doi.org/10.17654/MS100091455

Özel, G., & Inal, C. (2008). The probability function of the compound Poisson process and an application to aftershock sequence in Turkey. Environmetrics, 19(1), 79–85. https://doi.org/10.1002/env.857

Prasetya, I. M. Y. E., Mangku, I. W., & Sumarno, H. (2017). Estimating the mean and variance of a compound poisson process with the poisson intensity obtained as exponential of the linear function. Far East Journal of Mathematical Sciences, 102(4), 721–729. https://doi.org/10.17654/MS102040721

Puig, P., & Barquinero, J. F. (2011). An application of compound Poisson modelling to biological dosimetry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2127), 897–910. https://doi.org/10.1098/rspa.2010.0384

Ruhiyat, Wayan Mangku, I., & Gusti Putu Purnaba, I. (2013). Consistent estimation of the mean function of a compound cyclic Poisson process. Far East Journal of Mathematical Sciences, 77(2), 183–194.

Safitri, N. I. (2022). Sebaran asimtotik penduga fungsi nilai harapan proses poisson periodik majemuk dengan tren fungsi pangkat. Bogor (ID): Institut Pertanian Bogor.

Sari, I. F., Mangku, I. W., & Sumarno, H. (2016). Estimating the mean function of a compound cyclic poisson process in the presence of power function trend. Far East Journal of Mathematical Sciences, 100(11), 1825–1840. https://doi.org/10.17654/MS100111825

Wibowo, B. A., Mangku, I. W., & Siswadi. (2017). Statistical properties of an estimator for the mean function of a compound cyclic Poisson process in the presence of linear trend. Arab Journal of Mathematical Sciences, 23(2), 173–185. https://doi.org/10.1016/j.ajmsc.2016.08.004

Published

2022-10-08

Issue

Section

Articles