An η-Intuitionistic Fuzzy Rings Structure
DOI:
https://doi.org/10.31764/jtam.v7i1.11833Keywords:
averaging operator, η-intuitionistic fuzzy set, η-intuitionistic fuzzy ring, η-intuitionistic fuzzy ideals.Abstract
In this article, we present the structure of η-intuitionistic fuzzy ring. An η-intuitionistic fuzzy ring is a structure which is built with combinating the definition of fuzzy ring, intuitionistic fuzzy set, and η-intuitionistic fuzzy set. The η-intuitionistic fuzzy set is characterized by any value η∈[0,1], where the degree of membership μ_(A^η ) (k) is obtained based on the averaging operator of the degree of membership μ_A (k) and the value of η∈[0,1]. While the degree of non membership ν_(A^η ) (k) is obtained based on the averaging operator of the degree of non membership ν_A (k) and the value of 1-η∈[0,1]. In its development, new concepts were obtained, namely the η-intuitionistic fuzzy ideal and its properties related to the sum and product operation of η-intuitionistic fuzzy ideals. Furthermore, the η-intuitionistic fuzzy ideals concept can be developed into an η-intuitionistic fuzzy quotient ring, η-intuitionistic fuzzy homomorphism, and its properties on the next research.
Â
References
Abbas, H. H., & Al-Aeashi, S. N. (2012). A Fuzzy Semi Essential Submodule of a Fuzzy Module. Journal of Kufa for Mathematics and Compute, 1(5), 31–37.
Adamu, I. M., Tella, Y., & Alkali, A. J. (2019). On Normal Sub-Intuitionistic Fuzzy Multigroups. Annals of Pure and Applied Mathematics, 19(2), 127–139. https://doi.org/10.22457/apam.581v19n2a1
Akram, M., & Akmal, R. (2016). Operations on Intuitionistic Fuzzy Graph Structures. Fuzzy Information and Engineering, 8, 389–410.
Alam, M. Z. (2015). Fuzzy Rings and Anti Fuzzy Rings With Operators. IOSR Journal of Mathematics, 11(4), 48–54. https://doi.org/10.9790/5728-11444854
Atanassov, K. T. (1986). Intultionistic Fuzzy Sets. In Fuzzy Sets and Systems (Vol. 20).
Bakhadach, I., Oukessou, M., Melliani, S., & Chadli, L. S. (2016). Intuitionistic Fuzzy Ideal and Intuitionistic Fuzzy Prime Ideal in a Ring. Notes on Intuitionistic Fuzzy Sets, 22(2), 59–63. https://www.researchgate.net/publication/307882292
Balamurugan, M., Ragavan, C., & Balasubramanian, G. (2019). Anti-Intuitionistic Fuzzy Soft Ideals in BCK/BCI-algebras. www.sciencedirect.com
Barbhuiya, S. R. (2015). (∈,∈ ∨q)-Intuitionistic Fuzzy Ideals of BG-algebra. Fuzzy Information and Engineering, 7, 31–48.
Basnet, D. K. (2019). Intuitionistic Fuzzy Subrings and Ideals. In Topics in Intuitionistic Fuzzy Algebra (pp. 7–57). Lambert Academic Publishing GmbH & Co. KG.
Çuvalcıoğlu, G., & Tarsuslu (Yılmaz), S. (2021). Isomorphism Theorems on Intuitionistic Fuzzy Abstract Algebras. Communications in Mathematics and Applications, 12(1), 109–126.
Ejegwa, P. A., Akowe, S. O., Otene, P. M., & Ikyule, J. M. (2014). An Overview On Intuitionistic Fuzzy Sets. International Journal Of Scientific & Technology Research, 3. www.ijstr.org
Gunduz, C., & Bayramov, S. (2011). Intuitionistic fuzzy soft modules. Computers and Mathematics with Applications, 62(6), 2480–2486. https://doi.org/10.1016/j.camwa.2011.07.036
Jana, C., & Pal, M. (2017). Generalized Intuitionistic Fuzzy Ideals of BCK/BCI-algebras Based on 3-valued Logic and Its Computational Study. Fuzzy Information and Engineering, 9, 455–478.
Mandal, P., & Ranadive, A. S. (2014). The Rough Intuitionistic Fuzzy Ideals of Intuitionistic Fuzzy Subrings in a Commutative Ring. Fuzzy Information and Engineering, 6, 279–297.
Meena, K. (2017). Characteristic Intuitionistic Fuzzy Subrings of an Intuitionistic Fuzzy Ring. In Advances in Fuzzy Mathematics. ISSN 0973-533X (Vol. 12, Issue 2). http://www.ripublication.com
Onasanya, B. O., & Ilori, S. A. (2014). On Cosets and Normal Subgroups. In International J.Math. Combin (Vol. 3).
Rashmanlou, H., Borzooei, R. A., Samanta, S., & Pal, M. (2016). Properties of interval valued intuitionistic (S,T) – Fuzzy graphs. Pacific Science Review A: Natural Science and Engineering, 18(1), 30–37. https://doi.org/10.1016/j.psra.2016.06.003
Rashmanlou, H., Samanta, S., Pal, M., & Borzooei, R. A. (2015). Intuitionistic Fuzzy Graphs with Categorical Properties. Fuzzy Information and Engineering, 7, 317–334.
Sahoo, S., & Pal, M. (2015). Different types of products on intuitionistic fuzzy graphs. Pacific Science Review A: Natural Science and Engineering, 17(3), 87–96. https://doi.org/10.1016/j.psra.2015.12.007
Sharma, P. K. (2012). Intuitionistic Fuzzy Module over intuitionistic Fuzzy Ring. In International Journal of Fuzzy Mathematics and Systems (Vol. 2, Issue 2). http://www.ripublication.com
Shuaib, U., Alolaiyan, H., Razaq, A., Dilbar, S., & Tahir, F. (2020). On some algebraic aspects of η-intuitionistic fuzzy subgroups. Journal of Taibah University for Science, 14(1), 463–469. https://doi.org/10.1080/16583655.2020.1745491
Yamin, M., & Sharma, P. K. (2018). Intuitionistic Fuzzy Rings with Operators. International Journal of Mathematics and Computer Science, 6. https://doi.org/10.18535/ijmcr/v6i2.01
Yan, L. M. (2008). Intuitionistic fuzzy ring and its homomorphism image. Proceedings - 2008 International Seminar on Future BioMedical Information Engineering, FBIE 2008, 75–77. https://doi.org/10.1109/FBIE.2008.109
Yetkin, E., & Olgun, N. (2014). A new type fuzzy module over fuzzy rings. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/730932
Zadeh, L. . (1965). Fuzzy Sets. Information and Control, 8, 338–353.
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).