The Odd Harmonious Labeling of Layered Graphs

Authors

  • Fery Firmansah Department of Mathematics Education, Widya Dharma University, Klaten

DOI:

https://doi.org/10.31764/jtam.v7i2.12506

Keywords:

Harmonious labeling, Layared graphs, Odd harmonious graphs, Odd harmonious labelling.

Abstract

Graphs that have the properties of odd harmonious labeling are odd harmonious graphs. The research objective of this paper is to obtain odd harmonious labeling on layered graph C(x,y) and layered graph D(x,y). The research used in this paper is a qualitative method. The research flow consists of data collection, processing, and analysis. The data collection stage consists of constructing the definition of the new class graph, the data processing stage consists of constructing the vertex labeling and edge labeling, and the data analysis stage consists of constructing the theorem and proving it. The research results show that the layered graph C(x,y) and layered graph D(x,y) fulfill odd harmonious labeling. Such that the layered graph C(x,y) and layered graph D(x,y) are odd harmonious graphs. The benefit of this research is to add new properties of odd harmonious graphs. In addition, it does not rule out the possibility that this research can be developed again both in theory and application.

References

Abdel-Aal, M. E. (2013). Odd Harmonious Labelings of Cyclic Snakes. International Journal on Applications of Graph Theory In Wireless Ad Hoc Networks And Sensor Networks, 5(3), 1–11. https://doi.org/10.5121/jgraphoc.2013.5301

Abdel-Aal, & Seoud. (2016). Further Results on Odd Harmonious Graphs. International Journal on Applications of Graph Theory In Wireless Ad Hoc Networks And Sensor Networks, 8(3/4), 1–14. https://doi.org/10.5121/jgraphoc.2016.8401

Febriana, F., & Sugeng, K. A. (2020). Odd harmonious labeling on squid graph and double squid graph. Journal of Physics: Conference Series, 1538(1), 1–5. https://doi.org/10.1088/1742-6596/1538/1/012015

Firmansah, F. (2017). The Odd Harmonious Labeling on Variation of the Double Quadrilateral Windmill Graphs. Jurnal Ilmu Dasar, 18(2), 109. https://doi.org/10.19184/jid.v18i2.5648

Firmansah, F. (2020a). Pelabelan Harmonis Ganjil pada Graf Bunga Double Quadrilateral. Jurnal Ilmiah Sains, 20(1), 12–17. https://doi.org/10.35799/jis.20.1.2020.27278

Firmansah, F. (2020b). Pelabelan Harmonis Ganjil pada Graf Ular Jaring Berlipat. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 17(1), 1–8. https://doi.org/10.31851/sainmatika.v17i1.3182

Firmansah, F. (2022). Odd Harmonious Labeling on Some String Graph Classes. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 16(1), 315–322. https://doi.org/10.30598/barekengvol16iss1pp313-320

Firmansah, F., & Giyarti, W. (2021). Odd harmonious labeling on the amalgamation of the generalized double quadrilateral windmill graph. Desimal: Jurnal Matematika, 4(3), 373–378. https://doi.org/10.24042/djm

Firmansah, F., & Syaifuddin, M. W. (2018). Pelabelan Harmonis Ganjil pada Amalgamasi Graf Kincir Angin Double Quadrilateral. Seminar Nasional Pendidikan Matematika Ahmad Dahlan, 6. http://seminar.uad.ac.id/index.php/sendikmad/article/view/402

Firmansah, F., & Tasari. (2020). Odd Harmonious Labeling on Edge Amalgamation from Double Quadrilateral Graphs. Desimal: Jurnal Matematika, 3(1), 65–72. https://doi.org/10.24042/djm.v3i1.5712

Firmansah, F., & Yuwono, M. R. (2017a). Pelabelan Harmonis Ganjil pada Kelas Graf Baru Hasil Operasi Cartesian Product. Jurnal Matematika Mantik, 03(02), 87–95. https://doi.org/10.15642/mantik.2017.3.2.87-95

Firmansah, F., & Yuwono, M. R. (2017b). Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs. CAUCHY, 4(4), 161. https://doi.org/10.18860/ca.v4i4.4043

Gallian, J. A. (2019). A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18.

Govindarajan, R., & Srividya, V. (2020). On odd harmonious labelling of even cycles with parallel chords and dragons with parallel chords. International Journal of Computer Aided Engineering and Technology, 13(4), 409–424. https://doi.org/10.1504/ijcaet.2020.10029299

Jeyanthi, P., & Philo, S. (2015). Odd Harmonious Labeling of Some New Families of Graphs. Electronic Notes in Discrete Mathematics, 48, 165–168. https://doi.org/10.1016/j.endm.2015.05.024

Jeyanthi, P., & Philo, S. (2016). Odd harmonious labeling of some cycle related graphs. Proyecciones, 35(1), 85–98. https://doi.org/10.4067/S0716-09172016000100006

Jeyanthi, P., & Philo, S. (2019). Some Results On Odd Harmonious Labeling Of Graphs. Bulletin Of The International Mathematical Virtual Institute, 9, 567–576. https://doi.org/10.7251/BIMVI1903567J

Jeyanthi, P., Philo, S., & Siddiqui, M. K. (2019). Odd harmonious labeling of super subdivision graphs. Proyecciones, 38(1), 1–11. https://doi.org/10.4067/S0716-09172019000100001

Jeyanthi, P., Philo, S., & Sugeng, K. A. (2015). Odd harmonious labeling of some new families of graphs. SUT Journal of Mathematics, 51(2), 181–193. https://doi.org/10.1016/j.endm.2015.05.024

Jeyanthi, P., Philo, S., & Youssef, M. Z. (2019). Odd harmonious labeling of grid graphs. Proyecciones, 38(3), 412–416. https://doi.org/10.22199/issn.0717-6279-2019-03-0027

Kalaimathi, M., & Balamurugan, B. J. (2019). Computation of even-odd harmonious labeling of graphs obtained by graph operations. AIP Conference Proceedings, 2177. https://doi.org/10.1063/1.5135205

Liang, Z., & Bai, Z. (2009). On The Odd Harmonious Graphs with Applications. J. Appl. Math. Comput., 29, 105–116.

Mumtaz, K., John, P., & Silaban, D. R. (2021). The odd harmonious labeling of matting graph. Journal of Physics: Conference Series, 1722(1), 1–4. https://doi.org/10.1088/1742-6596/1722/1/012050

Mumtaz, K., & Silaban, D. R. (2021). The odd harmonious labelling of n hair-kC4-snake graph. Journal of Physics: Conference Series, 1725(1), 1–5. https://doi.org/10.1088/1742-6596/1725/1/012089

Philo, S., & Jeyanthi, P. (2021). Odd Harmonious Labeling of Line and Disjoint Union of Graphs. Chinese Journal of Mathematical Sciences, 1(1), 61–68.

Pujiwati, D. A., Halikin, I., & Wijaya, K. (2021). Odd harmonious labeling of two graphs containing star. AIP Conference Proceedings, 2326. https://doi.org/10.1063/5.0039644

Renuka, J., & Balaganesan, P. (2018). Odd harmonious and strongly odd harmonious labeling of some classes of graphs. Indian Journal of Public Health Research and Development, 9(9), 403–408. https://doi.org/10.5958/0976-5506.2018.01031.8

Saputri, G. A., Sugeng, K. A., & Froncek, D. (2013). The odd harmonious labeling of dumbbell and generalized prism graphs. AKCE International Journal of Graphs and Combinatorics, 10(2), 221–228.

Sarasvati, S. S., Halikin, I., & Wijaya, K. (2021). Odd Harmonious Labeling of Pn C4 and Pn D2(C4). Indonesian Journal of Combinatorics, 5(2), 94–101. https://doi.org/10.19184/ijc.2021.5.2.5

Senthil, P., & Ganeshkumar, M. (2020). K-odd sequential harmonious labeling of double m-triangular snakes. Advances in Mathematics: Scientific Journal, 9(8), 6377–6384. https://doi.org/10.37418/amsj.9.8.105

Seoud, M. A. A., & Hafez, H. M. (2018). Odd harmonious and strongly odd harmonious graphs. Kyungpook Mathematical Journal, 58(4), 747–759. https://doi.org/10.5666/KMJ.2018.58.4.747

Sugeng, K. A., Surip, S., & Rismayati, R. (2019). On odd harmonious labeling of m -shadow of cycle, gear with pendant and Shuriken graphs. AIP Conference Proceedings, 2192. https://doi.org/10.1063/1.5139141

Zala, D. H., Chotaliya, N. T., & Chaurasiya, M. A. (2021). Even-odd Harmonious Labeling of Some Graphs. International Journal of Innovative Technology and Exploring Engineering, 10(4), 149–151. https://doi.org/10.35940/ijitee.d8513.0210421

Downloads

Published

2023-04-08

Issue

Section

Articles