Modelling Dependencies of Stock Indices During Covid-19 Pandemic by Extreme-Value Copula

Authors

  • Retno Budiarti Departement of Mathematics, IPB University
  • Kumala Intansari Departement of Mathematics, IPB University
  • I Gusti Putu Purnaba Departement of Mathematics, IPB University
  • Fendy Septyanto Departement of Mathematics, IPB University

DOI:

https://doi.org/10.31764/jtam.v7i3.15109

Keywords:

ARMA-GARCH, Copula, Extreme Value Copula, Covid-19, Composite Index.

Abstract

Quantifying dependence among variables is the core of all modelling efforts in financial models. In the recent years, copula was introduced to model the dependence structure among financial assets return, and its application developed fast. A large number of studies on copula have been performed, but the study of multivariate extremes related with copulas was quite behind in comparison with the research on copulas. The COVID-19 pandemic is an extreme event that has caused the collapse of various economic activities which resulted in the decline of stock prices. The modelling of extreme events is therefore important to mitigate huge financial losses. Extreme-value copula can be suitable to quantify dependencies among assets under an extreme event. In this paper, we study the modelling of extreme value dependence using extreme value copulas on finance data. This model was applied in the portfolio of the IDX Composite Index (IHSG), Straits Times Index (STI) and Kuala Lumpur Stock Exchange (KLSE). Each individual asset return is modelled by the ARMA-GARCH and the joint distribution is modelled using extreme value copulas. This empirical study showed that Gumbel copula is the most appropriate extreme value copulas for the three indices. The results of this study are expected to be used as a basis for investors in the formation of a portfolio consisting of 2 financial assets and a portfolio consisting of 3 financial assets.

 

References

Ballarin, A. S., Barros, G. L., Cabrera, M. C. M., & Wendland, E. C. (2021). A copula-based drought assessment framework considering global simulation models. Journal of Hydrology: Regional Studies, 38. https://doi.org/10.1016/j.ejrh.2021.100970

Bodie, Z., Kane, A., & Marcus, A. j. (2014). Investments - Tenth Edition. McGraw-Hill Education.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis.

Budiarti, R., Wigena, A. H., Purnaba, I. G. P., & Achsani, N. A. (2018). Modelling the Dependence Structure of Financial Assets: A Bivariate Extreme Data Study. IOP Conference Series: Earth and Environmental Science, 187(1). https://doi.org/10.1088/1755-1315/187/1/012003

Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling Extremal Events. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33483-2

Enders, W. (1996). Applied Econometric Time Series. John Wiley & Sons, Inc.

Engle, R. (2009). Anticipating Correlations: A New Paradigm for Risk Management. Princeton University Press.

Ghorbel, A., & Trabelsi, A. (2009). Measure of financial risk using conditional extreme value copulas with EVT margins. The Journal of Risk, 11(4), 51–85. https://doi.org/10.21314/JOR.2009.196

Ghosh, I., Watts, D., & Chakraborty, S. (2022). Modeling Bivariate Dependency in Insurance Data via Copula: A Brief Study. Journal of Risk and Financial Management, 15(8). https://doi.org/10.3390/jrfm15080329

Gródek-Szostak, Z., Malik, G., Kajrunajtys, D., Szelag-Sikora, A., Sikora, J., Kuboń, M., Niemiec, M., & Kapusta-Duch, J. (2019). Modeling the dependency between extreme prices of selected agricultural products on the derivatives market using the linkage function. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154144

Gudendorf, G., & Segers, J. (2010). Extreme-Value Copulas (pp. 127–145). https://doi.org/10.1007/978-3-642-12465-5_6

Haug, S., Klüppelberg, C., & Peng, L. (2011). Statistical models and methods for dependence in insurance data. Journal of the Korean Statistical Society, 40(2), 125–139. https://doi.org/10.1016/j.jkss.2011.03.005

Hsu, C. P., Huang, C. W., & Chiou, W. J. P. (2012). Effectiveness of copula-extreme value theory in estimating value-at-risk: Empirical evidence from Asian emerging markets. Review of Quantitative Finance and Accounting, 39(4), 447–468. https://doi.org/10.1007/s11156-011-0261-0

Jafry, N. H. A., Ab Razak, R., & Ismail, N. (2022). Modelling Malaysia Stock Markets Using GARCH, EGARCH and Copula Models. Journal of Optimization in Industrial Engineering, 15(2), 295–303. https://doi.org/10.22094/JOIE.2022.1961703.1967

Joe, H. (2015). Dependence Modeling with Copulas.

Jondeau, E., & Rockinger, M. (2006). The Copula-GARCH model of conditional dependencies: An international stock market application. Journal of International Money and Finance, 25(5), 827–853. https://doi.org/10.1016/j.jimonfin.2006.04.007

Liu, X., Pan, F., Yuan, L., & Chen, Y. (2019). The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula. Energy, 182, 999–1012. https://doi.org/10.1016/j.energy.2019.06.071

Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of Banking & Finance, 24(7), 1097–1130. https://doi.org/10.1016/S0378-4266(99)00077-1

Marcon, G., Padoan, S. A., Naveau, P., Muliere, P., & Segers, J. (2014). Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials. http://arxiv.org/abs/1405.5228

Mashal, R., & Zeevi, A. (2005). Beyond Correlation: Extreme Co-movements Between Financial Assets. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.317122

McNeil, A. J., Frey, R., & Embrechts, P. (2005). Quantitative risk management: Concepts, techniques, and tools. In Quantitative Risk Management: Concepts, Techniques, and Tools. https://doi.org/10.1198/jasa.2006.s156

Mesbahzadeh, T., Miglietta, M. M., Mirakbari, M., Soleimani Sardoo, F., & Abdolhoseini, M. (2019). Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran). Advances in Meteorology, 2019. https://doi.org/10.1155/2019/6848049

Mung’atu, J. (2015). Copula Insurance risk modelling. https://doi.org/10.13140/RG.2.1.1452.8728

Nelsen, R. B. (2006). An Introduction to Copulas. Springer.

Nguyen-Huy, T., Deo, R. C., Mushtaq, S., Kath, J., & Khan, S. (2018). Copula-based agricultural conditional value-at-risk modelling for geographical diversifications in wheat farming portfolio management. Weather and Climate Extremes, 21, 76–89. https://doi.org/10.1016/j.wace.2018.07.002

Pham, L. (2013). Time Series Analysis with ARIMA-ARCH/GARCH model in R.

Poon, S.-H., Rockinger, M., & Tawn, J. (2004). Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications. Review of Financial Studies, 17(2), 581–610. https://doi.org/10.1093/rfs/hhg058

Shams, S., & Haghighi, F. K. (2013). A copula-GARCH model of conditional dependencies: estimating Tehran market stock exchange value-at-risk. Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, 2(2), 39–50.

Shi, P., Feng, X., & Boucher, J. P. (2016). Multilevel modeling of insurance claims using copulas. Annals of Applied Statistics, 10(2), 834–863. https://doi.org/10.1214/16-AOAS914

Snipes, M., & Taylor, D. C. (2014). Model selection and Akaike Information Criteria: An example from wine ratings and prices. Wine Economics and Policy, 3(1), 3–9. https://doi.org/10.1016/j.wep.2014.03.001

Soto, M., Gonzalez-Fernandez, Y., & Ochoa, A. (2015). Modeling with Copulas and Vines in Estimation of Distribution Algorithms Modeling with Copulas and Vines in Optimization and Machine Learning View project Estimation of Distribution Algorithms based on Bayesian Networks View project Modeling With Copulas And Vines In Estimation Of Distribution Algorithms. In Revista Investigación Operacional 36(1). https://www.researchgate.net/publication/232416347

Su, F.-C., Mukherjee, B., & Batterman, S. (2014). Modeling and analysis of personal exposures to VOC mixtures using copulas NIH Public Access. Environ Int, 6507(2), 236–245. https://doi.org/10.1016/j.envint

Tavakol, A., Rahmani, V., & Harrington, J. (2020). Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States. Environmental Research Letters, 15(10). https://doi.org/10.1088/1748-9326/abb1ef

Vettori, S., Huser, R., & Genton, M. G. (2018). A comparison of dependence function estimators in multivariate extremes. Statistics and Computing, 28(3), 525–538. https://doi.org/10.1007/s11222-017-9745-7

Wong, G., Lambert, M. F., & Metcalfe, A. V. (2008). Trivariate copulas for characterisation of droughts. ANZIAM Journal, 48, 306. https://doi.org/10.21914/anziamj.v49i0.364

World Health Organization (WHO). (2020). Coronavirus Disease (COVID-19) Situation Dashboard (2020). World Health Organization (WHO). https://covid19.who.int/

Wu, C., J.-F. Yeh, P., Chen, Y. Y., Lv, W., Hu, B. X., & Huang, G. (2021). Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multi-model ensemble projections. Journal of Hydrology, 598. https://doi.org/10.1016/j.jhydrol.2021.126265

Yang, X., Li, Y. P., Liu, Y. R., & Gao, P. P. (2020). A MCMC-based maximum entropy copula method for bivariate drought risk analysis of the Amu Darya River Basin. Journal of Hydrology, 590. https://doi.org/10.1016/j.jhydrol.2020.125502

Zhang, Y., Guo, L., Liang, C., Zhao, L., Wang, J., Zhan, C., & Jiang, S. (2022). Encounter risk analysis of crop water requirements and effective precipitation based on the copula method in the Hilly Area of Southwest China. Agricultural Water Management, 266. https://doi.org/10.1016/j.agwat.2022.107571

Published

2023-07-17

Issue

Section

Articles