The Mean Value Theorem for Integrals Method for Estimating Two-Dimensional Renewal Functions

Authors

  • Leopoldus Ricky Sasongko Universitas Kristen Satya Wacana
  • Bambang Susanto Universitas Kristen Satya Wacana

DOI:

https://doi.org/10.31764/jtam.v4i1.1831

Keywords:

Two-Dimensional Warranty, Renewal Functions, Renewal Integral Equations, Mean Value Theorem for Integrals, Bivariate Weibull Model.

Abstract

An important aspect in the provision of a two-dimensional warranty is the expected number of failures of a component during the two-dimensional warranty period. The purpose of this paper is to present a new method to obtain the expected number of failures of a nonrepairable compo­nent from the two-dimensional renewal functions as the so­lution of two-dimensional renewal integral equations through the Mean Value Theorem for Integrals (MeVTI) method. The two-dimensional renewal integral equation involves Lu-Bhattacharyya’s bivariate Weibull model as a two-dimensional failure model. It turns out that the estimation of the expected number of failures using the MeVTI method is close to that of the other method, Riemann-Stieljies method. The bivariate data behaviour of the failures of an automobile component is also studied in this paper.

References

Arunachalam, V., & Calvache, Ã. (2015). Approximation of the bivariate renewal function. Communications in Statistics: Simulation and Computation, 44(1), 154–167. https://doi.org/10.1080/03610918.2013.770306

Baik, J., Murthy, D. N. P., & Jack, N. (2004). Two-dimensional failure modeling with minimal repair. Naval Research Logistics, 51(3), 345–362. https://doi.org/10.1002/nav.10120

Baik, J., Murthy, D. N. P., & Jack, N. (2006). Erratum: Two-dimensional failure modeling with minimal repair which appeared in this journal of April 2004 (Naval Research Logistics 51:3 (345-362)). Naval Research Logistics, 53(1), 115–116. https://doi.org/10.1002/nav.20115

Banerjee, R., & Bhattacharjee, M. C. (2012). Analysis of a Two-dimensional Warranty Servicing Strategy with an Imperfect Repair Option. 9(1), 23–33.

Blischke, W. R., Karim, M. R., & Murthy, D. N. P. (2011). Warranty Data Collection and Analysis. In Springer Series in Reliability Engineering. https://doi.org/10.1007/978-1-4471-4588-2

Chari, N., Diallo, C., & Venkatadri, U. (2013). Optimal unlimited free-replacement warranty strategy using reconditioned products. International Journal of Performability Engineering, 9(2), 191–200.

Hadji, E. M., Kambo, N. S., & Rangan, A. (2015). Two-dimensional Renewal Function Approximation. Communications in Statistics - Theory and Methods, 44(15), 3107–3124. https://doi.org/10.1080/03610926.2013.815204

Hutník, O., & Molnárová, J. (2015). On Flett’s mean value theorem. Aequationes Mathematicae, 89(4), 1133–1165. https://doi.org/10.1007/s00010-014-0311-5

Iskandar, B. (1991). Two-dimensional renewal function solver. Research Report No. 4/91. Department of Mechanical Engineering. The University of Queensland. Brisbane. Australia.

Januantoro, A., & Sarno, R. (2018). Repair and replacement strategy for optimizing cost and time of warranty process using integer programming. Telkomnika (Telecommunication Computing Electronics and Control), 16(6), 2683–2691. https://doi.org/10.12928/TELKOMNIKA.v16i6.10407

Kambo, N. S., Rangan, A., & Hadji, E. M. (2012). Moments-based approximation to the renewal function. Communications in Statistics - Theory and Methods, 41(5), 851–868. https://doi.org/10.1080/03610926.2010.533231

Lu, J. C., & Bhattacharyya, G. K. (1990). Some new constructions of bivariate Weibull models. In Annals of the Institute of Statistical Mathematics (Vol. 42, Issue 3, pp. 543–559). https://doi.org/10.1007/BF00049307

Maghsoodloo, S., & Helvaci, D. (2014). Renewal and renewal-intensity functions with minimal repair. Journal of Quality and Reliability Engineering, 2014. https://doi.org/10.1155/2014/857437

Merikoski, J. K., Halmetoja, M., & Tossavainen, T. (2009). Means and the mean value theorem. International Journal of Mathematical Education in Science and Technology, 40(6), 729–740. https://doi.org/10.1080/00207390902825328

Mihai, M. (2015). An Integral Mean Value Theorem concerning Two Continuous Functions and Its Stability. International Journal of Analysis, 2015(1), 1–4. https://doi.org/10.1155/2015/894625

Omey, E., Mitov, K., & Vesilo, R. (2018). Approximations in bivariate renewal theory. Publications de l’Institut Mathematique, 104(118), 69–88. https://doi.org/10.2298/PIM1818069O

Pirade, S., Manurung, T., & Titaley, J. (2017). Integral Riemann-Stieltjes Pada Fungsi Bernilai Real. D’CARTESIAN, 6(1), 1. https://doi.org/10.35799/dc.6.1.2017.14987

Rohman, N., Mahatma, T., & Sasongko, L. R. (2018). Pemodelan Biaya Garansi Dua Dimensi Polis FRW(Non-Renewing Free Replacement Warranty) dengan Strategi Penggantian untuk Oil Filter Mobil. D’CARTESIAN, 7(1), 1. https://doi.org/10.35799/dc.7.1.2018.19547

Sasongko, L., & Mahatma, T. (2016). The Estimation of Renewal Functions Using the Mean Value Theorem for Integrals (MeVTI) Method. D’CARTESIAN, 5(2), 111. https://doi.org/10.35799/dc.5.2.2016.14984

Xie, M. (1989). On the solution of renewal-type integral equations. Communications in Statistics - Simulation and Computation, 18(1), 281–293. https://doi.org/10.1080/03610918908812760

Published

2020-04-24

Issue

Section

Articles