Bayes Estimation of Shape Parameter of Length Biased Weibull Distribution

Authors

  • Arun Kumar Rao Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur
  • Himanshu Pandey Department of Mathematics & Statistics, DDU Gorakhpur University, Gorakhpur

DOI:

https://doi.org/10.31764/jtam.v5i1.3268

Keywords:

Bayesian method, Length-biased Weibull distribution, Prior distributions, Loss functions.

Abstract

In this paper, length biased Weibull distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.

References

Ahmad, K., Ahmad, S. P., & Ahmed, A. (2016). Classical and Bayesian approach in estimation of scale parameter of Nakagami distribution. Journal of Probability and Statistics, 2016. https://doi.org/10.1155/2016/7581918

Ajami, M., & Jahanshahi, S. M. A. (2017). Parameter estimation in weighted Rayleigh distribution. Journal of Modern Applied Statistical Methods, 16(2), 256–276. https://doi.org/10.22237/jmasm/1509495240

Al-Bayyati. (2002). Comparing methods of estimating Weibull failure models using simulation. Baghdad University, Iraq.

Alzaatreh, A., Famoye, F., & Lee, C. (2013). Weibull-pareto distribution and its applications. Communications in Statistics - Theory and Methods, 42(9), 1673–1691. https://doi.org/10.1080/03610926.2011.599002

Basu, A. P., & Ebrahimi, N. (1991). Bayesian approach to life testing and reliability estimation using asymmetric loss function. Journal of Statistical Planning and Inference, 29(1-2), 21–31. https://doi.org/10.1016/0378-3758(92)90118-C

Calabria, R., & Pulcini, G. (1996). Point estimation under asymmetric loss functions for left-truncated exponential samples. Communications in Statistics - Theory and Methods, 25(3), 585–600. https://doi.org/10.1080/03610929608831715

Dar, A. A., Ahmed, A., & Reshi, J. A. (2018). Characterization and estimation of weighted Maxwell-Boltzmann distribution. Applied Mathematics and Information Sciences, 12(1), 193–202. https://doi.org/10.18576/amis/120119

Dey, D. K., Ghosh, M., & Srinivasan, C. (1986). Simultaneous estimation of parameters under entropy loss. Journal of Statistical Planning and Inference, 15(C), 347–363. https://doi.org/10.1016/0378-3758(86)90108-4

Dey, D. K., & Pei-San Liao Liu. (1992). On comparison of estimators in a generalized life model. Microelectronics Reliability, 32(1-2), 207–221. https://doi.org/10.1016/0026-2714(92)90099-7

Melin, J. B. (1994). Parametric estimation. Cost Engineering (Morgantown, West Virginia), 36(1), 19–24. https://doi.org/10.2307/2284262

Mudasir Sofi, Ahamad, S.P., Ahamad, A. (2016). Bayesian Estimation of Length Biased Nakagami Distribution. International Journal of Modern Mathematical Sciences, 44(2), 147–159.

Nassir, L. M., & Ibrahim, N. A. (2020). The Bayesian estimator for probabilistic dagum distribution. International Journal of Innovation, Creativity and Change, 12(5), 42–74.

Norström, J. G. (1996). The use of precautionary loss functions in risk analysis. IEEE Transactions on Reliability, 45(3), 400–403. https://doi.org/10.1109/24.536992

Oluwafemi, O. S. (2017). Length and Area Biased Exponentiated Weibull Distribution Based on Forest Inventories. Biometrics & Biostatistics International Journal, 6(2). https://doi.org/10.15406/bbij.2017.06.00163

Pandya, M., Pandya, S. and Andharia, P. (2013). Bayes estimation of Weibull length biased distribution. Asian Journal of Current Engineering and Maths, 2(1), 44–49.

Ramos, P. L., Louzada, F., Ramos, E., & Dey, S. (2019). The Fréchet distribution: Estimation and application - An overview. Journal of Statistics and Management Systems, 1–30. https://doi.org/10.1080/09720510.2019.1645400

Reshi, J.A., Ahmad, A. and Mir, K.A. (2014). Characterizations and estimation in the length-biased generalized Rayleigh distribution. Mathematical Theory and Modeling, 4(6), 87–98.

Reshi, J. A., Ahmad, A., & Ahmad, S. P. (2019). Bayesian Inference of Ailamujia Distribution using Different Loss Functions. In Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions (pp. 41–49). https://doi.org/10.21467/books.44.4

Tahir, M.H, Cordeiro, G.M. and Zubair, M. (2015). The Weibull-Lomax distribution: properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(2), 461–480.

Zellner, A. (1986). Bayesian Estimation and Prediction Using Asymmetric Loss Functions. Journal of the American Statistical Association, 81(394), 446. https://doi.org/10.2307/2289234

Published

2021-04-17

Issue

Section

Articles