A Fuzzy Logic in Election Sentiment Analysis: Comparison Between Fuzzy Naïve Bayes and Fuzzy Sentiment using CNN

Authors

  • Sugiyarto Sugiyarto Departement of Mathematics, Ahmad Dahlan University
  • Joko Eliyanto Departement of Mathematics, Ahmad Dahlan University
  • Nursyiva Irsalinda Departement of Mathematics, Ahmad Dahlan University
  • Zhurwahayati Putri Departement of Mathematics, Ahmad Dahlan University
  • Meita Fitrianawat Departement of Mathematics, Ahmad Dahlan University

DOI:

https://doi.org/10.31764/jtam.v5i1.3766

Keywords:

Sentiment Analysis, Fuzzy Logic, Naïve Bayes, Convolutional Neural Network,

Abstract

Sentiment analysis is an analysis with an objective to identify like, dislike, comments, opinion, or feedback on certain content which will be categorized into positive, negative, or neutral. In general selection, sentiment analysis widely known to be used to predict the winner on election process. This method tries to dig the people sentiment on their governor candidates during election, whether it’s positive, negative, or neutral opinion. The output of the positive sentiment is related to people acceptance towards one of the election nominee. That statement usually applied as a base reference for determining the result of the election process. In sentiment analysis, the importance of its fuzzy logics must be considered. Each of the people statement is assumed to have the level of positive, negative, or neutral percentage. The concept of fuzzy logic is developed and applied on one of this text mining method. This research is focusing on comparison analysis and fuzzy logic application in sentiment analysis method. Two method which discussed in this research are Fuzzy Naïve Bayes and Sentiment Fuzzy with convolutional neural network. This research is applied on PILKADA of Solo and Medan district case study. The data of the people opinion are acquired from twitter and collected on September 2020 to December 2020. The two methods which mentioned before are implemented on the acquired data and the output of these method application then compared. The conclusion of this research suggest that different approach will resulting in different output.

References

Alamsyah, D. M. G. A. (2018). Employee Sentiment Analysis Using Naive Bayes Classifier. Int. J. Sci. Res, 7(5), 1676–1679.

Alita, D., Priyanta, S., & Rokhman, N. (2019). Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter. J. Inf. Syst. Eng. Bus. Intell., 5, 100.

Andrianti, S. D. (2018). Sentiment Analysis On Twitter Account Using Naive Bayes Classifier Algorithm Case Study : Indonesia Healthcare and Social Security Agency ( BPJS Kesehatan ). 2(2), 23–28.

Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra, H., & Singh, K. P. (2020). Analysis of Political Sentiment Orientations on Twitter. Procedia Comput. Sci, 167, 1821–1828.

Arunabala, D. C., Jwalitha, P., & Nuthalapati, S. (2019). Text Sentiment Analysis Based on Cnns and Svm. Int. J. Res. -GRANTHAALAYAH, 7(6), 77–83.

Bansal, B., & Srivastava, S. (2018). On predicting elections with hybrid topic based sentiment analysis of tweets. Procedia Comput. Sci, 135, 346–353.

Budiharto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. J. Big Data, 5(1), 1–10.

D, C. V. (2019). Hybrid approach: naive bayes and sentiment VADER for analyzing sentiment of mobile unboxing video comments. Int. J. Electr. Comput. Eng, 9, 5.

Deriu, J., & Cieliebak, M. (2016). Sentiment analysis using convolutional neural networks with multi-task training and distant supervision on Italian tweets. CEUR Workshop Proc, 1749.

Dey, L., Chakraborty, S., Biswas, A., Bose, B., & Tiwari, S. (2016). Sentiment Analysis of Review Datasets Using Naïve Bayes‘ and K-NN Classifier. Int. J. Inf. Eng. Electron. Bus, 8(4), 54–62.

Fathurochman, D., Witanti, W., & Yuniarti, R. (2104). Perancangan Game Turn Based Strategy Menggunakan Logika Fuzzy dan Naive Bayes Classifier. Semin. Nas. Inform, 44–51.

Fitri, V. ., Andreswari, R., & Hasibun, M. A. (2019). Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm. Procedia Comput. Sci, 161, 765–772.

HONDA, N., & OHSATO, A. (1986). Fuzzy Set Theory and Its Applications. 13(2).

Jefferson, C., Liu, H., & Cocea, M. (2017). Fuzzy approach for sentiment analysis. IEEE Int. Conf. Fuzzy Syst.

Kim, H., & Jeong, Y. S. (2019). Sentiment classification using Convolutional Neural Networks. Appl. Sci, 9(11), 1–14.

KPUD Kota Medan. (2020). Salinan Sk N0. 1672 Tentang Penetapan Rekapitulasi Hasil Penghitungan Perolehan Suara Dan Hasil Penetapan Walikota Dan Wakil Walikota Medan Tahun. KPUD Kota Medan.

KPUD Kota Surakarta. (2020). SK No.212 Rekap Hasil Perolehan Suara. KPUD Kota Surakarta.

Lutfi, A. A., Permanasari, A. E., & Fauziati, S. (2018). Corrigendum: Sentiment Analysis in the Sales Review of Indonesian Marketplace by Utilizing Support Vector Machine. J. Inf. Syst. Eng. Bus. Intell, 4(2), 169.

Manliguez, C. (2016). Generalized Confusion Matrix for Multiple Classes Generalized Confusion Matrix for Multiple Classes The total numbers of false negatif ( TFN ), false positive ( TFP ), and true negatif ( TTN ) for each class i will be calculated based on the Generalized. 5–7.

Melucci, M. (2016). Relevance Feedback Algorithms Inspired by Quantum Detection. IEEE Trans. Knowl. Data Eng, 28(4), 1022–1034.

Nasichuddin, M. A., Adji, T. B., & Widyawan, W. (2018). Performance Improvement Using CNN for Sentiment Analysis. IJITEE (International J. Inf. Technol. Electr. Eng, 2(1).

Normah, N. (2019). Naïve Bayes Algorithm For Sentiment Analysis Windows Phone Store Application Reviews. SinkrOn, 3(2), 13.

Nugroho, D. G., Chrisnanto, Y. H., & Wahana, A. (2015). Analisis Sentimen Pada Jasa Ojek Online. 156–161.

Odim, M. O., Ogunde, A. O., Oguntunde, B. O., & Phillips, S. A. (2020). Exploring the performance characteristics of the naïve bayes classifier in the sentiment analysis of an Airline’s social media data. Adv. Sci. Technol. Eng. Syst, 5(4), 266–272.

Purnomoputra, R. B., & Wisesty, U. N. (2019). Sentiment Analysis of Movie Reviews using Naïve Bayes Method with Gini Index Feature Selection. Open Access J Data Sci Appl, 2(2), 85–094.

Rahman, T. (2014). S a u f l. 4(1), 33–48.

Rajput, Q., Haider, S., & Ghani, S. (2016). Lexicon-Based Sentiment Analysis of Teachers’ Evaluation. Appl. Comput. Intell. Soft Comput, 1–12.

Sánchez-Rada, J. F., & Iglesias, C. A. (2019). Social context in sentiment analysis: Formal definition, overview of current trends and framework for comparison. Inf. Fusion, 52, 344–356.

Strang, G. (2016). Introduction to Linear Algebra, Fifth Edition. In Wellesley-Cambridge Press.

Suppala, K., & Rao, N. (2019). Sentiment analysis using naïve bayes classifier. Int. J. Innov. Technol. Explor. Eng, 8(8), 264–269.

Suryani, P. S. M., Linawati, L., & Saputra, K. O. (2019). Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Facebook Berbahasa Indonesia. Maj. Ilm. Teknol. Elektro, 18(1), 145.

Susanti, A. R., Djatna, T., & Kusuma, W. A. (2017). Twitter’s sentiment analysis on GSM services using Multinomial Naïve Bayes. Telkomnika (Telecommunication Comput. Electron. Control, 15(3), 1354–1361.

Sutabri, T., Suryatno, A., Setiadi, D., & Negara, E. S. (2018). Improving naïve bayes in sentiment analysis for hotel industry in Indonesia. Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, 1–6.

Zadeh, L. A. (1988). Fuzzy Logic. In Computer (Long. Beach. Calif).

Published

2021-04-17

Issue

Section

Articles