The Characteristics of the First Kind of Chebyshev Polynomials and its Relationship to the Ordinary Polynomials

Authors

  • Ikhsan Maulidi Departement of Mathematics, Syiah Kuala University
  • Bonno Andri Wibowo Department of Mathematics, Institut Teknologi Sumatera
  • Vina Apriliani Department of Mathematics Education, Universitas Islam Negeri Ar-Raniry
  • Rofiqul Umam School of Science and Technology, Kwansei Gakuin University

DOI:

https://doi.org/10.31764/jtam.v5i2.4647

Keywords:

Chebyshev Polynomial, Orthogonal Polynomial, Chebyshev Differential Equation, Rodrigue formula,

Abstract

In this article, we discuss the Chebyshev Polynomial and its characteristics. The second order difference equation and the process obtaining the explicit solution of the Chebyshev polynomial have been given for each real number. The symmetry and orthogonality of the Chebyshev polynomial has also been demonstrated using the explicit solutions obtained. Furthermore, we have also given how to approx the polynomial function using the Chebyshev polynomials.

References

Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd ed.). Wiley.

Bergamo, P., D’Arco, P., De Santis, A., & Kocarev, L. (2005). Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1382–1393. https://doi.org/10.1109/TCSI.2005.851701

Bhrawy, A. H., & Alofi, A. S. (2013). The operational matrix of fractional integration for shifted Chebyshev polynomials. Applied Mathematics Letters, 26(1), 25–31. https://doi.org/10.1016/j.aml.2012.01.027

Boyd, J. P., & Petschek, R. (2014). The relationships between Chebyshev, Legendre and Jacobi polynomials: The generic superiority of chebyshev polynomials and three important exceptions. Journal of Scientific Computing, 59(1), 1–27. https://doi.org/10.1007/s10915-013-9751-7

Capozziello, S., D’Agostino, R., & Luongo, O. (2018). Cosmographic analysis with Chebyshev polynomials. Monthly Notices of the Royal Astronomical Society, 476(3), 3924–3938. https://doi.org/10.1093/MNRAS/STY422

Cesarano, C. (2012). Identities and generating functions on Chebyshev polynomials. Georgian Mathematical Journal, 19(3), 427–440. https://doi.org/10.1515/gmj-2012-0031

Cesarano, C. (2014). Generalized Chebyshev polynomials. Hacettepe Journal of Mathematics and Statistics, 43(5), 731–740. https://doi.org/10.7151/dmgaa.1278

Dziok, J., Raina, R. K., & Sokół, J. (2015). Application of Chebyshev polynomials to classes of analytic functions. Comptes Rendus Mathematique, 353(5), 433–438. https://doi.org/10.1016/j.crma.2015.02.001

Eslahchi, M. R., Dehghan, M., & Amani, S. (2012). The third and fourth kinds of Chebyshev polynomials and best uniform approximation. Mathematical and Computer Modelling, 55(5–6), 1746–1762. https://doi.org/10.1016/j.mcm.2011.11.023

Hassani, H., Tenreiro Machado, J. A., & Naraghirad, E. (2019). Generalized shifted Chebyshev polynomials for fractional optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 75, 50–61. https://doi.org/10.1016/j.cnsns.2019.03.013

Jajang, J. (2019). Aplikasi Deret Polinomial Cebyshev Dalam Mle Untuk Estimasi Slm. Prosiding, November, 230–241. http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/view/645

Kafash, B., Delavarkhalafi, A., & Karbassi, S. M. (2012). Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems. Scientia Iranica, 19(3), 795–805. https://doi.org/10.1016/j.scient.2011.06.012

Kelley, W. G., & Peterson, A. C. (2001). Difference Equations: An Introduction with Applications (Second). Academic Press Harcourt Place.

Khader, M. M. (2012). Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials. Arab Journal of Mathematical Sciences, 18(1), 61–71. https://doi.org/10.1016/j.ajmsc.2011.09.001

Kim, D. S., Kim, T., & Lee, S. H. (2014). Some identities for bernoulli polynomials involving Chebyshev polynomials. Journal of Computational Analysis and Applications, 16(1), 172–180.

Koepf, W. (1999). Efficient Computation of Chebyshev Polynomials in Computer Algebra. Computer Algebra Systems: A Practical Guide, April 1997, 79–99.

Liu, Y. (2009). Application of the Chebyshev polynomial in solving Fredholm integral equations. Mathematical and Computer Modelling, 50(3–4), 465–469. https://doi.org/10.1016/j.mcm.2008.10.007

Mason, J. C., & Handscomb, D. C. (2002). Chebyshev Polynomials. Chapmann and Hall.

Montijano, E., Montijano, J. I., & Sagüés, C. (2013). Chebyshev polynomials in distributed consensus applications. IEEE Transactions on Signal Processing, 61(3), 693–706. https://doi.org/10.1109/TSP.2012.2226173

Qi, F., Lim, D., Guo, B., Expressions, D., & Representations, I. (2018). Explicit Formulas and Identities on Bell Polynomials and Falling. March. https://doi.org/10.13140/RG.2.2.34679.52640

Salih, A. A., & Shihab, S. (2020). New operational matrices approach for optimal control based on modified Chebyshev polynomials Introduction : 2(2), 68–78.

Sedaghat, S., Ordokhani, Y., & Dehghan, M. (2012). Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4815–4830. https://doi.org/10.1016/j.cnsns.2012.05.009

Sweilam, N. H., Nagy, A. M., & El-Sayed, A. A. (2015). Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos, Solitons and Fractals, 73, 141–147. https://doi.org/10.1016/j.chaos.2015.01.010

Published

2021-10-26

Issue

Section

Articles