Comparasion Model Analysis Time of Earthquake Occurrence in Indonesia based on Hazard Rate with Single Decrement Method
DOI:
https://doi.org/10.31764/jtam.v6i1.5535Keywords:
Earthquake, Hazard Rate, Insurance, Single Decrement Method, Survival FunctionAbstract
The purpose of this studi is to find an expectations and variability as estimators of the risk of earthquakes occurring in each province in Indonesia. Indonesia is a country that prone to natural disasters, especially earthquakes and tsunamis. The earthquake disaster damage the buildings and casualties. The risk of loss from earthquakes can be transferred using insurance. Insurance companies certainly need an analysis to estimate the probability of an earthquake occurring at a certain location and time. Hazard rate has an important role in the prediction theory of the process of earthquakes. The hazard rate can be known by the single decrement method. After the hazard rate is known, the survival function and the distribution function of the cumulative distribution of earthquake data in Indonesia will be known to look for expectations and variability as estimators of the risk of earthquakes occurring in each province in Indonesia. The data used in this study is earthquake that happen in Indonesia categorized as destructive earthquake minimum 5 magnitude. We used the data to compare a hazard function using linear model, quadratic model, cubic model and exponential. First, we plot and then using each models find the standard error. The best model suggest for Indonesia prediction Time of Earthquake Occurrence using an exponential model.References
BBC News. (2018). Gempa Lombok: Korban Meninggal Dunia Mencapai 436 orang, Kerugian Tembus Rp5 Triliun. Www.Bbc.Com. https://www.bbc.com/indonesia/indonesia-45165817
Bray, A., & Schoenberg, F. P. (2013). Assessment of point process models for earthquake forecasting. Statistical Science, 28(4), 510–520.
Cipta, A., Rudyanto, A., Afif, H., Robiana, R., Solikhin, A., Omang, A., & Hidayati, S. (2021). Unearthing the buried Palu–Koro Fault and the pattern of damage caused by the 2018 Sulawesi Earthquake using HVSR inversion. Geological Society, London, Special Publications, 501(1), 185–203.
Daley, D. J., & Vere-Jones, D. (2003). An introduction to the theory of point processes: volume I: elementary theory and methods. Springer.
Ghahramani, S. (2018). Fundamentals of Probability: With Stochastic Processes. Chapman and Hall/CRC.
Ghosh, S., & Gosavi, A. (2017). A semi-Markov model for post-earthquake emergency response in a smart city. Control Theory and Technology, 15(1), 13–25.
Gumelar, G. (2018). BNPB Sebut Total Kerugian Gempa Lombok Capai Rp12 Triliun. Cnnindonesia.Com. https://www.cnnindonesia.com/ekonomi/20180910124912-532-329123/bnpb-sebut-total-kerugian-gempa-lombok-capai-rp12-triliun
Halim, N. N., & Widodo, E. (2017). Clustering Dampak Gempa Bumi di Indonesia Menggunakan Kohonen Self Organizing Maps (SOM). Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika Dan Nilai-Nilai Islami), 1(1), 188–194.
Hogg, RV; McKean, JW; Craig, A. (2019). Introduction to Mathematical Statistics Sixth Edition (8th ed.). Prentice Hall Upper Saddle River, NJ.
Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustaman, B., Anugrah, S. D., & Thio, H. K. (2014). A probabilistic tsunami hazard assessment for Indonesia.
Maulidi, I. (2014). Pendugaan Hazard Rate Gempa di Provinsi Aceh dengan Metode Single Decrement. IPB University.
Miller, I. &. (2014). Mathematical Statistics with Applications (8th ed.). Pearson Education, Inc.
Nisa, K. (2017). Pendugaan Hazard Rate Kematian di Provinsi DKI Jakarta dengan Metode Single Decrement Pendekatan Likelihood. Indonesian Journal on Software Engineering, 03(2), 24–31.
Pasari, S., & Dikshit, O. (2018). Stochastic earthquake interevent time modeling from exponentiated Weibull distributions. Natural Hazards, 90(2), 823–842.
Prathivi, R. (2020). Optimasi Algoritme Naive Bayes Untuk Klasifikasi Data Gempa Bumi di Indonesia Berdasarkan Hiposentrum. Telematika, 13(1), 36–43.
Rangkuti, A., & Sunusi, N. (2019). Estimating Claim Occurrences in Non Life Insurance By Using Single Decrement Environment Method. Journal of Physics: Conference Series, 1341(9), 92015.
Siswadi, A. (2018). 23 Gempa Merusak di Indonesia Sepanjang 2018. Tekno.Tempo.Co. https://tekno.tempo.co/read/1159731/23-gempa-merusak-di-indonesia-sepanjang-2018
Stein, S., Geller, R. J., & Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562, 1–25.
Sunusi, N., Kresna, A. J., & Islamiyati, A. (2013). Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region. International Journal of Physical and Mathematical Sciences, 7(6), 1059–1062.
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).