Non-Braid Graphs of Ring Zn

Authors

  • Era Setya Cahyati Universitas Gadjah Mada
  • Rizka 'Abid Fadhiilah Universitas Gadjah Mada
  • Ananditya Dwi Candra Bp Universitas Gadjah Mada
  • Indah Emilia Wijayanti Universitas Gadjah Mada

DOI:

https://doi.org/10.31764/jtam.v6i1.5559

Keywords:

Non-braid graphs, Ring Zn, Complete graphs, Connected graphs.

Abstract

The research in graph theory has been widened by combining it with ring. In this paper, we introduce the definition of a non-braid graph of a ring.  The non-braid graph of a ring R, denoted by YR, is a simple graph with a vertex set R\B(R), where B(R) is the set of x in R such that  xyx=yxy for all y in R.  Two distinct vertices x and y are adjacent if and only if xyx not equal to yxy.  The method that we use to observe the non-braid graphs of Zn is by seeing the adjacency of the vertices and its braider.  The main objective of this paper is to prove the completeness and connectedness of the non-braid graph of ring Zn. We prove that if n is a prime number, the non-braid graph of Zn is a complete graph. For all n greater than equal to 3,  the non-braid graph of Zn is a connected graph.

References

Abdollahi, A., Akbari, S., & Maimani, H. R. (2006). Non-commuting graph of a group. Journal of Algebra, 298(2), 468–492. https://doi.org/10.1016/j.jalgebra.2006.02.015:

Aditya, M. Z., & Muchtadi-Alamsyah, I. (2021). Jacobson graph over ℤn. Journal of Physics: Conference Series, 1722. https://doi.org/10.1088/1742-6596/1722/1/012027:

Allcock, D. (2002). Braid pictures for Artin groups. Transactions of the American Mathematical Society, 354(9), 3455–3474. https://doi.org/10.1090/s0002-9947-02-02944-6:

Chartrand, G., Lesniak, L., & Zhang, P. (2015). Graphs & Digraphs (6th ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b19731:

Chelvam, T. T., & Asir, T. (2011). A note on total graph of ℤn. Journal of Discrete Mathematical Sciences and Cryptography, 14(1). https://doi.org/10.1080/09720529.2011.10698320:

Dutta, J., & Basnet, D. K. (2017a). On non-commuting graph of a finite ring. https://arxiv.org/abs/1703.05039:

Dutta, J., & Basnet, D. K. (2017b). Relative non-commuting graph of a finite ring. http://arxiv.org/abs/1705.02161:

Dutta, J., Basnet, D. K., & Nath, R. K. (2015). On commuting probability of finite rings. http://arxiv.org/abs/1510.08211:

Erfanian, A., Khashyarmanesh, K., & Nafar, K. (2015). Non-commuting graphs of rings. Discrete Mathematics, Algorithms and Applications, 7(3). https://doi.org/10.1142/S1793830915500275:

Ghalandarzadeh, S., & Rad, P. M. (2011). Torsion Graph of Modules. Extracta Mathematicae, 26(1), 153–163.:

Gupta, R. Sen. (2013). The graph Γ2(R) over a ring R. International Journal of Pure and Applied Mathematics, 86(6), 893–904. https://doi.org/10.12732/ijpam.v86i6.2:

Ma, X., Wei, H., & Yang, L. (2014). The Coprime graph of a group. International Journal of Group Theory, 3(3), 13–23. https://doi.org/10.22108/ijgt.2014.4363:

Maimani, H. R., Pournaki, M. R., Tehranian, A., & Yassemi, S. (2011). Graphs Attached to Rings Revisited. Arabian Journal for Science and Engineering, 36(6), 997–1011. https://doi.org/10.1007/s13369-011-0096-y:

Malik, D. S., Mordeson, J. M., & Sen, M. K. (1997). Fundamentals of Abstract Algebra. McGraw-Hill.:

Nath, R. K., Sharma, M., Dutta, P., & Shang, Y. (2021). On r-noncommuting graph of finite rings. Axioms, 10(233), 1–14. https://doi.org/10.3390/axioms10030233:

Omidi, G. R., & Vatandoost, E. (2011). On the commuting graph of rings. Journal of Algebra and Its Applications, 10(3), 521–527. https://doi.org/10.1142/S0219498811004811:

Patra, K., & Kalita, S. (2014). Prime Graph of the Commutative Ring Zn. Matematika, 30(1), 59–67.:

Pirzada, S., Aijaz, M., & Bhat, M. I. (2020). On zero divisor graphs of the rings Zn. Afrika Matematika, 31. https://doi.org/10.1007/s13370-019-00755-3:

Taloukolaei, A. J., & Sahebi, S. (2018). Von Neumann regular graphs associated with rings. Discrete Mathematics, Algorithms and Applications, 10(3). https://doi.org/10.1142/S1793830918500295:

Tolue, B., Erfanian, A., & Jafarzadeh, A. (2014). A kind of non-commuting graph of finite groups. Journal of Sciences, Islamic Republic of Iran, 25(4), 379–384.:

Wilson, R. J. (2010). Introduction to Graph Theory (5th ed.). Pearson Education Limited.

Published

2022-01-22

Issue

Section

Articles