Bootstrap Resampling in Gompertz Growth Model with Levenberg–Marquardt Iteration

Authors

  • Fandi Rezian Pratama Gultom Statistics Department, Brawijaya Malang
  • Solimun Solimun Statistics Department, Brawijaya Malang
  • Nurjannah Nurjannah Statistics Department, Brawijaya Malang

DOI:

https://doi.org/10.31764/jtam.v6i4.8617

Keywords:

Bootstrap resampling, Residual normality, Gomperzt, Levenberg-Marquardt,

Abstract

Soybean plants have limited growth with a planting period of 12 weeks, which causes the observed sample to be very small. A small sample of soybean plant growth observations can be bias causes in the conclusion of prediction results on soybean plant growth. The  purpose this study is to apply  the bootstrap resampling technique in Gompertz growth model which overcomes residual distribution with small samples, the research data was taken from soybean plant growth in four varieties with four spacing treatments, five replications and twelve weeks (long planting period).   Gompertz growth model uses nonlinear least squares method in estimating parameters with Levenberg–Marquardt iteration. The value of the Gompertz model after resampling bootstrap has no significant difference. The adjusted R2 value of 0.96 is close to 1. This means that the total diversity of plant heights can be explained by the Gompertz model of 96 percent. Judging from the graph of predictions of soybean plant growth before resampling and after resampling coincide with each other it can also be seen in the initial growth values before resampling 14, 05 and 14.18, the maximum growth values are 55.13 and 55.60. Bootsrap resampling technique can overcome residual normality in the Gompertz growth model, but does not change the information in the initial data.

References

Achcar, J. A., & Lopes, S. R. C. (2016). Linear and Non-Linear Regression Models Assuming a Stable Distribution. Revista Colombiana de Estadística, 39(1), 109–128. https://doi.org/10.15446/rce.v39n1.55144

Akin, E., Pelen, N. N., Tiryaki, I. U., & Yalcin, F. (2020). Parameter identification for gompertz and logistic dynamic equations. PLoS ONE, 15(4), 0–21. https://doi.org/10.1371/journal.pone.0230582

Arnastauskaitė, J., Ruzgas, T., & Bražėnas, M. (2021). An exhaustive power comparison of normality tests. Mathematics, 9(7), 1–20. https://doi.org/10.3390/math9070788

Bagus, I., Ari, O., Dwiatmono, A. W., & U, B. S. S. (2013). Penerapan bootstrap pada neural network untuk peramalan produksi minyak mentah di indonesia. Jurnal Sains Dan Seni POMITS, 2(2), 201–206.

Bello, A. O., Bamiduro, A. T., Chuwkwu, A. U., & Osowole, I. O. (2015). Bootstrap Nonlinear Regression Application in a Design of an Experi- ment Data for Fewer Sample Size. International Journal of Research (IJR), 2(2), 428–441.

Bose, A., & Chatterjee, S. (2018). U -Statistics , M m -Estimators and Resampling. Springer.

Chakraborty, B., Bhattacharya, S., Basu, A., Bandyopadhyay, S., & Bhattacharjee, A. (2014). Goodness-of-fit testing for the Gompertz growth curve model. Metron, 72(1), 45–64. https://doi.org/10.1007/s40300-013-0030-z

Conde-Gutiérrez, R. A., Colorado, D., & Hernández-Bautista, S. L. (2021). Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México. Nonlinear Dynamics, 7. https://doi.org/10.1007/s11071-021-06471-7

dreper and smit (Third). (1998). Wiley. https://doi.org/10.1002/9781118625590

Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. In S. Hinkley, Reid, Rubin and (Ed.), An Introduction to the Bootstrap. Chapman & Hall. https://doi.org/10.1007/978-1-4899-4541-9

Gavin, H. P. (2019). The Levenberg-Marquardt Algorithm For Nonlinear Least Squares Curve-Fitting Problems. Duke University, 1–19. http://people.duke.edu/~hpgavin/ce281/lm.pdf

Ghosh, H., Iquebal, M. A., & Prajneshu. (2011). Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm. Journal of Applied Statistics, 38(3), 491–500. https://doi.org/10.1080/02664760903521401

Hecke, T. Van. (2017). The Levenberg-Marquardt method to fit parameters in the Monod kinetic model. Journal of Statistics and Management Systems, 20(5), 953–963. https://doi.org/10.1080/09720510.2017.1325090

Hipkins, R., & Cowie, B. (2016). The sigmoid curve as a metaphor for growth and change. Teachers and Curriculum, 16(2). https://doi.org/10.15663/tandc.v16i2.136

Huang, H. H., Hsiao, C. K., & Huang, S. Y. (2010). Nonlinear regression analysis. International Encyclopedia of Education, 339–346. https://doi.org/10.1016/B978-0-08-044894-7.01352-X

Ibrahim, J., Chen, M.-H., & Sinha, D. (2009). Springer Series in Statistics. In The Elements of Statistical Learning (Vol. 27, Issue 2).

Kalina, J., & Peštová, B. (2017). Various Approaches to Szroeter ’ s Test for Regression Quantiles. 361–365.

Larasati, A. (2020). Analysis of Quadratic Pathway with Resampling Bootstrap on Simulation Data. International Journal of Advanced Science and Technology, 29(6), 8582–8588.

Lenart, A., & Missov, T. I. (2016). Goodness-of-fit tests for the Gompertz distribution. Communications in Statistics - Theory and Methods, 45(10), 2920–2937. https://doi.org/10.1080/03610926.2014.892323

Li, P., & Dimitris, P. (2016). Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions. Annals of Statistics, 44(2), 629–659.

Mohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 13–14.

Nguimkeu, P. (2014). A simple selection test between the Gompertz and Logistic growth models. Technological Forecasting and Social Change, 88, 98–105. https://doi.org/10.1016/j.techfore.2014.06.017

Panik, M. J. (2014). Growth curve modeling: Theory and applications. In Growth Curve Modeling: Theory and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey. https://doi.org/10.1002/9781118763971

Patmanidis, S., Charalampidis, A. C., Kordonis, I., Mitsis, G. D., & Papavassilopoulos, G. P. (2017). Comparing Methods for Parameter Estimation of the Gompertz Tumor Growth Model. IFAC-PapersOnLine, 50(1), 12203–12209. https://doi.org/10.1016/j.ifacol.2017.08.2289

Pradani, W. A., Setiawan, A., & Parhusip, H. A. (2021). Analisis Regresi Non Linear Pada Data Pasien Covid-19 Menggunakan Metode Bootsrap. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 453–466. https://doi.org/10.30598/barekengvol15iss3pp453-466

Rahman, M. M., Hossain, M. M., & Majumder, A. K. (2013). Classification Rule for Small Samples: A Bootstrap Approach. International Journal of Advanced Scientific and Technical Research Issue, 3(1), 337–344.

Román-Román, P., Romero, D., Rubio, M. A., & Torres-Ruiz, F. (2012). Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing. Applied Mathematics and Computation, 218(9), 5121–5131. https://doi.org/10.1016/j.amc.2011.10.077

Rousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2021). The Percentile Bootstrap: A Primer With Step-by-Step Instructions in R. Advances in Methods and Practices in Psychological Science, 4(1). https://doi.org/10.1177/2515245920911881

solimun, fernandes adji. (2017). 23.back-cov_12214_Metode_Statistika_Multivariat_Pemodelan_Persamaan_Struktural__SEM__Pendekatan_WarpPLS__.pdf (p. 25). Brawijaya press.

Tjørve, K. M. C., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12(6), 1–17. https://doi.org/10.1371/journal.pone.0178691

Wang, S., Xu, M., Zhang, X., & Wang, Y. (2022). Fitting Nonlinear Equations with the Levenberg–Marquardt Method on Google Earth Engine. Remote Sensing, 14(9), 1–14. https://doi.org/10.3390/rs14092055

Wardhani, W. S., & Kusumastuti, P. (2013). Describing the height growth of corn using Logistic and Gompertz model. Agrivita, 35(3), 237–241. https://doi.org/10.17503/Agrivita-2013-35-3-p237-241

Zhou, R., Wu, D., Fang, L., Xu, A., & Lou, X. (2018). A Levenberg-Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters. Forests, 9(12), 1–16. https://doi.org/10.3390/f9120757

Published

2022-10-07

Issue

Section

Articles