Laminar Viscous Fluid Flow with Micro-rotation Capabilities through Cylindrical Surface
DOI:
https://doi.org/10.31764/jtam.v6i4.9158Keywords:
Viscous Fluid, Laminar Fluid Flow, Micro-rotation, Heat Sources.Abstract
Viscous fluid can micro-rotate due to collisions between particles that affect viscous fluid's velocity and temperature.This study aims to determine the effect of viscosity parameters, micro-rotation materials, and heat sources on fluid velocity and temperature. The model of the laminar flow equation for viscous fluid in this study uses the laws of physics, namely, the law of conservation of mass, Newton II, and Thermodynamics I. The formed dimensional equations are converted into non-dimensional equations by using non-dimensional variables. Then, the non-dimensional equations are converted into similarity equations using stream function and similarity variables. The formed similarity equation was solved numerically by using the Gauss-Seidel method. The results of this study indicate that the velocity and temperature of the viscous fluid flow can be influenced by the parameters of viscosity, micro-rotation material, and heat source. The presence of collisions between particles causes heat to cause an increase in the variance of viscosity parameters, micro-rotation materials, and heat sources. Therefore, the viscous fluid's velocity decreases and its temperature increases.
Â
References
Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. (2018). On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9(January), 1224–1232. https://doi.org/10.1016/j.rinp.2018.04.017
Abbas, Z., & Hayat, T. (2008). Radiation effects on MHD flow in a porous space. International Journal of Heat and Mass Transfer, 51(5–6), 1024–1033. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.031
Abel, M. S., & Mahesha, N. (2008). Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Applied Mathematical Modelling, 32(10), 1965–1983. https://doi.org/10.1016/j.apm.2007.06.038
Anjum, A., Mir, N. A., Farooq, M., Javed, M., Ahmad, S., Malik, M. Y., & Alshomrani, A. S. (2018). Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach. Results in Physics, 9, 955–960. https://doi.org/10.1016/j.rinp.2018.03.024
Arifuzzaman, S. M., Khan, M. S., Mehedi, M. F. U., Rana, B. M. J., & Ahmmed, S. F. (2018). Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Engineering Science and Technology, an International Journal, 21(2), 215–228. https://doi.org/10.1016/j.jestch.2018.03.004
Committee, S. (2019). Reynolds number in laminar flows and in turbulence Reynolds Number in Laminar Flows and in Turbulence. 020003(June).
Fauziyah, M., Widodo, B., & Adzkiya, D. (2022). Profil Mikrorotasi dan Temperatur Aliran Magnetohidrodinamik Fluida Mikrokutub Pada Bola Bermagnet. Square: Journal of Mathematics and Mathematics Education, 4(1). 10.21580/square.2022.4.1.9480
Hassan, A. R. (2019). Thermodynamics analysis of an internal heat generating fluid of a variable viscosity reactive couette flow. Journal of King Saud University - Science, 31(4), 506–510. https://doi.org/10.1016/j.jksus.2018.05.015
Hattori, H., Wada, A., Yamamoto, M., & Yooko, H. (2022). Experimental study of laminar-to-turbulent transition in pipe flow. AIP Physics of Fluid. https://doi.org/https://doi.org/10.1063/5.0082624
Imtiaz, M., Mabood, F., Hayat, T., & Alsaedi, A. (2019). Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. International Journal of Heat and Mass Transfer, 145, 118781. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118781
Jafeer, M. B., & Mustafa, M. (2021). A study of elastico-viscous fluid flow by a revolving disk with heat dissipation effects using HAM based package BVPh 2.0. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-83864-z
Javed, T., & Siddiqui, M. A. (2018). Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact. Journal of Molecular Liquids, 249, 831–842. https://doi.org/10.1016/j.molliq.2017.11.124
Jenifer, A. S., Saikrishnan, P., & Lewis, R. W. (2021). Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer. Journal of Applied and Computational Mechanics, 7(2), 935–943. https://doi.org/10.22055/jacm.2021.35920.2761
Khader, M. M., & Sharma, R. P. (2021). Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: Implementing fourth order predictor–corrector FDM. Mathematics and Computers in Simulation, 181, 333–350. https://doi.org/10.1016/j.matcom.2020.09.014
Khan, A., Ashraf, M., Rashad, A. M., & Nabwey, H. A. (2020). Impact of Heat Generation on Magneto-Nanofluid Free Convection Flow about Sphere in the Plume Region. Mathematics, 8. https://doi.org/10.3390/math8112010
Mahir, N., & Altaç, Z. (2019). Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75(October 2018), 103–121. https://doi.org/10.1016/j.ijheatfluidflow.2018.11.013
Mittal, A. S. (2021). Analysis of water-based composite MHD fluid flow using HAM. In International Journal of Ambient Energy (Vol. 42, Issue 13). Taylor & Francis. https://doi.org/10.1080/01430750.2019.1611648
Mittal, A. S., & Patel, H. R. (2020). Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation. Physica A: Statistical Mechanics and Its Applications, 537, 122710. https://doi.org/10.1016/j.physa.2019.122710
Ningtyas, R. A. (2016). Aliran Fluida Mikro Kutub Tak Tunak Magnetohidrodinamik Pada Lapisan Batas Yang Melewati Bola Teriris. 1–5. https://repository.its.ac.id/75183/%0Ahttps://repository.its.ac.id/75183/4/1214201205-Master_Thesis.pdf
Norasia, Y., Widodo, B., & Adzkiya, D. (2021). Pergerakan Aliran MHD Ag-AIR Melewati Bola Pejal. Limits: Journal of Mathematics and Its Applications, 18(1), 15. https://doi.org/10.12962/limits.v18i1.7888
Norasia, Y., & Zulaikha, Z. (2019). Pengaruh Partikel Nano Zn dan ZnO terhadap Aliran MHD Fluida Nano Pada Lapisan Batas Bola Bermagnet. Square : Journal of Mathematics and Mathematics Education, 1(2), 133. https://doi.org/10.21580/square.2019.1.2.4792
Patel, H. R., & Singh, R. (2019). Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition. International Communications in Heat and Mass Transfer, 107, 68–92. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.007
Patil, P. M., Shashikant, A., Roy, S., & Hiremath, P. S. (2020). Mixed convection flow past a yawed cylinder. International Communications in Heat and Mass Transfer, 114, 104582. https://doi.org/10.1016/j.icheatmasstransfer.2020.104582
Prameela, M., Lakshmi, D. V., & Gurejala, J. R. (2022). Influence of thermal radiation on mhd fluid flow over a sphere. Biointerface Research in Applied Chemistry, 12(5), 6978–6990. https://doi.org/10.33263/BRIAC125.69786990
Reddy, S. R. R., & Anki Reddy, P. B. (2022). Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution. Propulsion and Power Research, 11(1), 129–142. https://doi.org/10.1016/j.jppr.2022.01.001
Shankar Goud, B., & Nandeppanavar, M. M. (2021). Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differential Equations in Applied Mathematics, 4(June), 100104. https://doi.org/10.1016/j.padiff.2021.100104
Simoni, D., Lengani, D., Dellacasagrande, M., Kubacki, S., & Dick, E. (2019). An accurate data base on laminar-to-turbulent transition in variable pressure gradient flows. International Journal of Heat and Fluid Flow, 77(October 2018), 84–97. https://doi.org/10.1016/j.ijheatfluidflow.2019.02.008
Tafrikan, M., & Ghani, M. (2020). Profil Kecepatan dan Temperatur Pada Aliran Konveksi Campuran Yang Melalui Bola Berpori Dengan Pengaruh Hidrodinamika Magnet. Jurnal Inovasi Pendidikan Matematika, 1, 132–141.
Tafrikan, M., Widodo, B., & Imron, C. (2015). Pemodelan Pengaruh Panas terhadap Aliran Fluida Konveksi Bebas yang melalui Bola Berpori. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika UMS, 795–805.
Ur Rehman, K., Shatanawi, W., & Al-Mdallal, Q. M. (2022). A comparative remark on heat transfer in thermally stratified MHD Jeffrey fluid flow with thermal radiations subject to cylindrical/plane surfaces. Case Studies in Thermal Engineering, 32(March), 101913. https://doi.org/10.1016/j.csite.2022.101913
Zawawi, M. H., Saleha, A., Salwa, A., Hassan, N. H., Zahari, N. M., Ramli, M. Z., & Muda, Z. C. (2018). A review: Fundamentals of computational fluid dynamics (CFD). AIP Conference Proceedings, 2030. https://doi.org/10.1063/1.5066893
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).