Laminar Viscous Fluid Flow with Micro-rotation Capabilities through Cylindrical Surface

Authors

  • Yolanda Norasia Mathematics, Universitas Islam Negeri Walisongo, Semarang http://orcid.org/0000-0003-3453-4652
  • Mohamad Tafrikan Mathematics, Universitas Islam Negeri Walisongo, Semarang
  • Mohammad Ghani Data Science Technology, Universitas Airlangga, Surabaya

DOI:

https://doi.org/10.31764/jtam.v6i4.9158

Keywords:

Viscous Fluid, Laminar Fluid Flow, Micro-rotation, Heat Sources.

Abstract

Viscous fluid can micro-rotate due to collisions between particles that affect viscous fluid's velocity and temperature.This study aims to determine the effect of viscosity parameters, micro-rotation materials, and heat sources on fluid velocity and temperature. The model of the laminar flow equation for viscous fluid in this study uses the laws of physics, namely, the law of conservation of mass, Newton II, and Thermodynamics I. The formed dimensional equations are converted into non-dimensional equations by using non-dimensional variables. Then, the non-dimensional equations are converted into similarity equations using stream function and similarity variables. The formed similarity equation was solved numerically by using the Gauss-Seidel method. The results of this study indicate that the velocity and temperature of the viscous fluid flow can be influenced by the parameters of viscosity, micro-rotation material, and heat source. The presence of collisions between particles causes heat to cause an increase in the variance of viscosity parameters, micro-rotation materials, and heat sources. Therefore, the viscous fluid's velocity decreases and its temperature increases.

 

Author Biographies

Yolanda Norasia, Mathematics, Universitas Islam Negeri Walisongo, Semarang

Mathematics Departement

Mohamad Tafrikan, Mathematics, Universitas Islam Negeri Walisongo, Semarang

Mathematics Departement

Mohammad Ghani, Data Science Technology, Universitas Airlangga, Surabaya

Mathematics Departement

References

Abbas, N., Saleem, S., Nadeem, S., Alderremy, A. A., & Khan, A. U. (2018). On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip. Results in Physics, 9(January), 1224–1232. https://doi.org/10.1016/j.rinp.2018.04.017

Abbas, Z., & Hayat, T. (2008). Radiation effects on MHD flow in a porous space. International Journal of Heat and Mass Transfer, 51(5–6), 1024–1033. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.031

Abel, M. S., & Mahesha, N. (2008). Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Applied Mathematical Modelling, 32(10), 1965–1983. https://doi.org/10.1016/j.apm.2007.06.038

Anjum, A., Mir, N. A., Farooq, M., Javed, M., Ahmad, S., Malik, M. Y., & Alshomrani, A. S. (2018). Physical aspects of heat generation/absorption in the second grade fluid flow due to Riga plate: Application of Cattaneo-Christov approach. Results in Physics, 9, 955–960. https://doi.org/10.1016/j.rinp.2018.03.024

Arifuzzaman, S. M., Khan, M. S., Mehedi, M. F. U., Rana, B. M. J., & Ahmmed, S. F. (2018). Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Engineering Science and Technology, an International Journal, 21(2), 215–228. https://doi.org/10.1016/j.jestch.2018.03.004

Committee, S. (2019). Reynolds number in laminar flows and in turbulence Reynolds Number in Laminar Flows and in Turbulence. 020003(June).

Fauziyah, M., Widodo, B., & Adzkiya, D. (2022). Profil Mikrorotasi dan Temperatur Aliran Magnetohidrodinamik Fluida Mikrokutub Pada Bola Bermagnet. Square: Journal of Mathematics and Mathematics Education, 4(1). 10.21580/square.2022.4.1.9480

Hassan, A. R. (2019). Thermodynamics analysis of an internal heat generating fluid of a variable viscosity reactive couette flow. Journal of King Saud University - Science, 31(4), 506–510. https://doi.org/10.1016/j.jksus.2018.05.015

Hattori, H., Wada, A., Yamamoto, M., & Yooko, H. (2022). Experimental study of laminar-to-turbulent transition in pipe flow. AIP Physics of Fluid. https://doi.org/https://doi.org/10.1063/5.0082624

Imtiaz, M., Mabood, F., Hayat, T., & Alsaedi, A. (2019). Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. International Journal of Heat and Mass Transfer, 145, 118781. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118781

Jafeer, M. B., & Mustafa, M. (2021). A study of elastico-viscous fluid flow by a revolving disk with heat dissipation effects using HAM based package BVPh 2.0. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-83864-z

Javed, T., & Siddiqui, M. A. (2018). Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact. Journal of Molecular Liquids, 249, 831–842. https://doi.org/10.1016/j.molliq.2017.11.124

Jenifer, A. S., Saikrishnan, P., & Lewis, R. W. (2021). Unsteady MHD Mixed Convection Flow of Water over a Sphere with Mass Transfer. Journal of Applied and Computational Mechanics, 7(2), 935–943. https://doi.org/10.22055/jacm.2021.35920.2761

Khader, M. M., & Sharma, R. P. (2021). Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source and thermal radiation: Implementing fourth order predictor–corrector FDM. Mathematics and Computers in Simulation, 181, 333–350. https://doi.org/10.1016/j.matcom.2020.09.014

Khan, A., Ashraf, M., Rashad, A. M., & Nabwey, H. A. (2020). Impact of Heat Generation on Magneto-Nanofluid Free Convection Flow about Sphere in the Plume Region. Mathematics, 8. https://doi.org/10.3390/math8112010

Mahir, N., & Altaç, Z. (2019). Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in cross flow. International Journal of Heat and Fluid Flow, 75(October 2018), 103–121. https://doi.org/10.1016/j.ijheatfluidflow.2018.11.013

Mittal, A. S. (2021). Analysis of water-based composite MHD fluid flow using HAM. In International Journal of Ambient Energy (Vol. 42, Issue 13). Taylor & Francis. https://doi.org/10.1080/01430750.2019.1611648

Mittal, A. S., & Patel, H. R. (2020). Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation. Physica A: Statistical Mechanics and Its Applications, 537, 122710. https://doi.org/10.1016/j.physa.2019.122710

Ningtyas, R. A. (2016). Aliran Fluida Mikro Kutub Tak Tunak Magnetohidrodinamik Pada Lapisan Batas Yang Melewati Bola Teriris. 1–5. https://repository.its.ac.id/75183/%0Ahttps://repository.its.ac.id/75183/4/1214201205-Master_Thesis.pdf

Norasia, Y., Widodo, B., & Adzkiya, D. (2021). Pergerakan Aliran MHD Ag-AIR Melewati Bola Pejal. Limits: Journal of Mathematics and Its Applications, 18(1), 15. https://doi.org/10.12962/limits.v18i1.7888

Norasia, Y., & Zulaikha, Z. (2019). Pengaruh Partikel Nano Zn dan ZnO terhadap Aliran MHD Fluida Nano Pada Lapisan Batas Bola Bermagnet. Square : Journal of Mathematics and Mathematics Education, 1(2), 133. https://doi.org/10.21580/square.2019.1.2.4792

Patel, H. R., & Singh, R. (2019). Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition. International Communications in Heat and Mass Transfer, 107, 68–92. https://doi.org/10.1016/j.icheatmasstransfer.2019.05.007

Patil, P. M., Shashikant, A., Roy, S., & Hiremath, P. S. (2020). Mixed convection flow past a yawed cylinder. International Communications in Heat and Mass Transfer, 114, 104582. https://doi.org/10.1016/j.icheatmasstransfer.2020.104582

Prameela, M., Lakshmi, D. V., & Gurejala, J. R. (2022). Influence of thermal radiation on mhd fluid flow over a sphere. Biointerface Research in Applied Chemistry, 12(5), 6978–6990. https://doi.org/10.33263/BRIAC125.69786990

Reddy, S. R. R., & Anki Reddy, P. B. (2022). Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution. Propulsion and Power Research, 11(1), 129–142. https://doi.org/10.1016/j.jppr.2022.01.001

Shankar Goud, B., & Nandeppanavar, M. M. (2021). Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differential Equations in Applied Mathematics, 4(June), 100104. https://doi.org/10.1016/j.padiff.2021.100104

Simoni, D., Lengani, D., Dellacasagrande, M., Kubacki, S., & Dick, E. (2019). An accurate data base on laminar-to-turbulent transition in variable pressure gradient flows. International Journal of Heat and Fluid Flow, 77(October 2018), 84–97. https://doi.org/10.1016/j.ijheatfluidflow.2019.02.008

Tafrikan, M., & Ghani, M. (2020). Profil Kecepatan dan Temperatur Pada Aliran Konveksi Campuran Yang Melalui Bola Berpori Dengan Pengaruh Hidrodinamika Magnet. Jurnal Inovasi Pendidikan Matematika, 1, 132–141.

Tafrikan, M., Widodo, B., & Imron, C. (2015). Pemodelan Pengaruh Panas terhadap Aliran Fluida Konveksi Bebas yang melalui Bola Berpori. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika UMS, 795–805.

Ur Rehman, K., Shatanawi, W., & Al-Mdallal, Q. M. (2022). A comparative remark on heat transfer in thermally stratified MHD Jeffrey fluid flow with thermal radiations subject to cylindrical/plane surfaces. Case Studies in Thermal Engineering, 32(March), 101913. https://doi.org/10.1016/j.csite.2022.101913

Zawawi, M. H., Saleha, A., Salwa, A., Hassan, N. H., Zahari, N. M., Ramli, M. Z., & Muda, Z. C. (2018). A review: Fundamentals of computational fluid dynamics (CFD). AIP Conference Proceedings, 2030. https://doi.org/10.1063/1.5066893

Published

2022-10-07

Issue

Section

Articles