Geometry Learning Through Batik Reconstruction

Authors

  • Ratnadewi Ratnadewi Department of Electrical Engineering, Maranatha Christian University
  • Agus Prijono Department of Electrical Engineering, Maranatha Christian University
  • Ariesa Pandanwangi Faculty of Arts and Design, Maranatha Christian University

DOI:

https://doi.org/10.31764/jtam.v6i4.9964

Keywords:

Geometry, Motifs, Turtle graphics, Vector images.

Abstract

In this world, the shapes of objects, including Batik motifs in Indonesia, are regular and irregular. One of the regular Batik motifs is Surya Kawung Batik from Mojokerto. The purpose of this research is to observe the ability of the Electrical Engineering Department students in Maranatha Christian University to study and reconstruct the geometric shapes of Surya Kawung Batik. In the making of the Batik motifs, the research methods employed are survey, observation, exploration, testing, and improvement, while in the learning process, the method applied is descriptive qualitative, in which the researchers check the data credibility. Turtle graphics algorithm and mathematical calculations are used to form Batik geometric motifs. The result of this research shows an increase in the students' ability to learn the geometric shapes and to reconstruct digital Batik motifs which resemble the original Batik motifs and which can be stored using a smaller memory. If the memory for storing motifs is small, the required storage space will be more efficient.

 

Author Biography

Ratnadewi Ratnadewi, Department of Electrical Engineering, Maranatha Christian University

Electrical Engineering Department

References

Annati, E. (2001). Structure of Art, Structure of Mind. SAGE Journal, 54(2), 81–97.

Bilai, Ö., Konca, A. S., & Arıkan, N. (2019). Children’;s Geometric Understanding through Digital Activities: The Case of Basic Geometric Shapes. International Journal of Progressive Education, 15(3), 108–122. https://doi.org/10.29329/ijpe.2019.193.8

Biza, I. (2011). Students’ evolving meaning about tangent line with the mediation of a dynamic geometry environment and an instructional example space. Technology, Knowledge and Learning, 16 2(November), 125–151. https://doi.org/10.1007/s10758-011-9180-3

Chan, J. (2014). Learn Python in one day and learn it well: Python for beginners with hands-on project: the only book you need to start coding in Python immediately. In Learn coding fast.

Clements, D. H., & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133–148. https://doi.org/10.1007/s10857-011-9173-0

Dobashi, Y., Kaji, S., & Iwasaki, K. (2019). Mathematical Insights into Advanced Computer Graphics Techniques (Vol. 32). Springer. https://doi.org/10.1007/978-981-13-2850-3

Enggaringtyas, D. ., Stefanus, C. ., & Agustina, T. A. . (2019). Upaya Peningkatan Penguasaan Konsep Geometri Matematika Berdasarkan Teori Belajar Bruner pada Siswa Kelas IV SD. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(2), 105–113. https://doi.org/https://doi.org/10.31764/jtam.v3i2.1027

Fan, J., Yang, X., & Liu, Y. (2019). Fractal calculus for analysis of wool fiber: Mathematical insight of its biomechanism. Journal of Engineered Fibers and Fabrics, 14, 0–3. https://doi.org/10.1177/1558925019872200

Goldman, R., Schaefer, S., & Ju, T. (2013). Turtle Geometry in Computer Graphics and Computer Aided Design. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://people.engr.tamu.edu/schaefer/research/TurtlesforCADRevised.pdf

Happonen, A. (2015). Art-technology Collaboration and Motivation Sources in Technologically Supported Artwork Buildup Project. ScienceDirect, 78, 407–414. https://doi.org/https://doi.org/10.1016/j.phpro.2015.11.055

Hu, T., Xie, Q., Yuan, Q., Lv, J., & Xiong, Q. (2021). Design of ethnic patterns based on shape grammar and artificial neural network. Alexandria Engineering Journal, 60(1), 1601–1625. https://doi.org/10.1016/j.aej.2020.11.013

Islam, M. T., & Mariana, N. (2021). Konsep Geometri Dalam Motif Batik Mojokerto Sebagai Peninggalan Kerajaan Majapahit. Jurnal Penelitian Pendidikan Guru Sekolah Dasar, 9(7), 2788–2801.

Lindenmayer, A. (2004). The algorithmic beauty of plants. Springer-Verlag.

Novita, R., Putra, M., Rosayanti, E., & Fitriati, F. (2018). Design learning in mathematics education: Engaging early childhood students in geometrical activities to enhance geometry and spatial reasoning. Journal of Physics: Conference Series, 1088. https://doi.org/10.1088/1742-6596/1088/1/012016

Ratnadewi, R. (2022). Program Motif Batik Surya Kawung Mojokerto Dengan Turtle Graphics (Patent No. EC00202241942). In Kementerian Hukum dan Hak Asasi Manusia (No. EC00202241942). https://e-hakcipta.dgip.go.id/index.php/c?code=OGNjYjJkODE3NDIxMDk5ZGU0Y2JlY2JjN2U0MTQ2YWUK

Ratnadewi, R., Pandanwangi, A., & Prijono, A. (2021). Learning mathematics through art in a faculty of engineering. World Transactions on Engineering and Technology Education, 19(3), 271–275. http://www.wiete.com.au/journals/WTE&TE/Pages/Vol.19, No.3 (2021)/03-Ratnadewi-R.pdf

Widodo, C. E. (2020). The use of fractal geometry in tiling motif design. International Journal of Innovative Research in Advanced Engineering, 07(04), 263–266. https://doi.org/10.26562/ijirae.2020.v0704.001

Yusri, Y., & Arifin, S. (2018). Desain Pembelajaran Kooperatif Berbasis Teori Bruner Untuk Meningkatkan Kualitas Pembelajaran Matematika. HISTOGRAM: Jurnal Pendidikan Matematika, 2(2), 147. https://doi.org/10.31100/histogram.v2i2.233

Published

2022-10-07

Issue

Section

Articles