MobilenetV2 Architecture To Detect Covid-19 X-Ray Imagery

Authors

  • Widi Hastomo ITB Ahmad Dahlan Jakarta
  • Adhitio Satyo Bayangkari Karno Universitas Gunadarma
  • Ellya Sestri Institut Teknologi dan Bisnis Ahmad Dahlan Jakarta
  • Eva Karla Universitas Gunadarma
  • Stevianus Stevianus Universitas Gunadarma
  • Dodi Arif Universitas Gunadarma

DOI:

https://doi.org/10.31764/justek.v5i2.11820

Keywords:

Covid-19, Chest x-ray, MobileNetv2

Abstract

Abstract:  The COVID-19 pandemic has hit all over the world, in the last two years and has changed the pace, structure and nature of social life. This study aims to detect COVID-19 using a chest x-ray image dataset sourced from kaggle.com, which is divided into 4 categories. The proposed method is CNN with MobileNetV2 architecture, by dividing 80% train data and 20% test data into 224x224 and batch size 32. The optimizer uses SGD, lr 0.005, momentum 0.9 and epoch 20. The results of the study with the achievement of precision values for the covid category 0.99, lung opacity 0.98, normal 0.96 and viral pneumonia category reached 0.99. Further studies can use the development of the CNN model and can try with other optimizers.

Abstrak: Pandemi covid-19 telah melanda diseluruh dunia, dalam dua tahun terakhir dan mengubah langkah, struktur dan sifat kehidupan bermasyarakat. Penelitian ini  bertujuan untuk mendeteksi covid-19 menggunakan dataset citra chest x-ray yang bersumber dari kaggle.com, yang dibagi menjadi 4 kategori. Metode yang diusulkan yaitu CNN dengan arsitektur MobileNetV2, dengan membagi data train 80% dan data test 20% ukuran citra menjadi 224x224 dan batch size 32. Optimizer menggunakan SGD, lr 0.005, momentum 0.9 serta epoch 20. Hasil penelitian ini dengan capaian nilai presisi untuk kategori covid 0.99, lung opacity 0.98, normal 0.96 dan kategori viral pneumonia mencapai 0.99. Studi selanjutnya dapat menggunakan pengembangan dari model CNN serta dapat mencoba dengan optimizer yang lain.

References

Akbarimajd, Adel, Nicolas Hoertel, Mohammad Arafat Hussain, Ali Asghar Neshat, Mahmoud Marhamati, Mahdi Bakhtoor, and Mohammad Momeny. 2022. “Learning-to-Augment Incorporated Noise-Robust Deep CNN for Detection of COVID-19 in Noisy X-Ray Images.†Journal of Computational Science 63:101763. doi: https://doi.org/10.1016/j.jocs.2022.101763.

Ayumi, Vina, L. M. Rasd. Rere, Mohamad Ivan Fanany, and Aniati Murni Arymurthy. 2017. “Optimization of Convolutional Neural Network Using Microcanonical Annealing Algorithm.†2016 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2016 506–11. doi: 10.1109/ICACSIS.2016.7872787.

Banerjee, Avinandan, Arya Sarkar, Sayantan Roy, Pawan Kumar Singh, and Ram Sarkar. 2022. “COVID-19 Chest X-Ray Detection through Blending Ensemble of CNN Snapshots.†Biomedical Signal Processing and Control 78:104000. doi: https://doi.org/10.1016/j.bspc.2022.104000.

Doll, Piotr, Ross Girshick, and Facebook Ai. n.d. “Mask R-CNN Ar.â€

Emin Sahin, M. 2022. “Deep Learning-Based Approach for Detecting COVID-19 in Chest X-Rays.†Biomedical Signal Processing and Control 78:103977. doi: https://doi.org/10.1016/j.bspc.2022.103977.

Hastomo, Widi. 2021. “Klasifikasi Covid-19 Chest X-Ray Dengan Tiga Arsitektur Cnn (Resnet-152, Inceptionresnet-V2, Mobilenet-V2).†5(Dl).

Hastomo, Widi, Adhitio Satyo Bayangkari Karno, Nawang Kalbuana, Andri Meiriki, and Sutarno. 2021. “Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia.†Journal of Physics: Conference Series 1933(1):012050. doi: 10.1088/1742-6596/1933/1/012050.

Hastomo, Widi, and Satyo Bayangkari. 2021. “Diagnosa Covid-19 Chest X-Ray Dengan Convolution Neural Network Arsitektur Resnet-152.†2(1):26–33.

Hastomo, Widi, Adhitio Satyo, Bayangkari Karno, and Nawang Kalbuana. 2021. “Characteristic Parameters of Epoch Deep Learning to Predict Covid-19 Data in Indonesia.†doi: 10.1088/1742-6596/1933/1/012050.

Karno, Adhitio Satyo Bayangkari, Widi Hastomo, and Indra Sari Kusuma Wardhana. 2020. “Prediksi Jangka Panjang Covid-19 Indonesia Menggunakan Deep Learning Long-Term.†Seminar Nasional Teknologi Informasi Dan Komunikasi 483–90.

Kaur, Taranjit, Tapan K. Gandhi, and Bijaya K. Panigrahi. 2021. “Automated Diagnosis of COVID-19 Using Deep Features and Parameter Free BAT Optimization.†IEEE Journal of Translational Engineering in Health and Medicine 9:1–9. doi: 10.1109/JTEHM.2021.3077142.

Khoirul, Hendrik Muhid. 2021. “Harga Tes PCR Dari Rp 2.500.000 Di Awal Pandemi Kini Turun Jadi Rp 300.000.†Tempo.Co. Retrieved (https://bisnis.tempo.co/read/1521706/harga-tes-pcr-dari-rp-2-500-000-di-awal-pandemi-kini-turun-jadi-rp-300-000).

Makarim, Fadhli Rizal. 2022. “Mengenal 3 Jenis Tes Corona Yang Digunakan Di Indonesia.†Halodoc.Com. Retrieved (https://www.halodoc.com/artikel/mengenal-jenis-tes-corona-yang-digunakan-di-indonesia).

Mar-Cupido, Ricardo, Vicente García, Gilberto Rivera, and J. Salvador Sánchez. 2022. “Deep Transfer Learning for the Recognition of Types of Face Masks as a Core Measure to Prevent the Transmission of COVID-19.†Applied Soft Computing 125:109207. doi: https://doi.org/10.1016/j.asoc.2022.109207.

Muhammad Chowdhuri, Amith Khandakar. 2022. “COVID-19 Radiography Database.†Kaggle.Com. Retrieved (https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database).

Rasdi Rere, L. M., Mohamad Ivan Fanany, and Aniati Murni Arymurthy. 2016. “Metaheuristic Algorithms for Convolution Neural Network.†Computational Intelligence and Neuroscience 2016. doi: 10.1155/2016/1537325.

RI, Kemenkes. 2022. “FAQ Covid-19.†Kementerian Kesehatan RI. Retrieved (https://www.kemkes.go.id/folder/view/full-content/structure-faq.html).

Roy, Santanu, Mrinal Tyagi, Vibhuti Bansal, and Vikas Jain. 2022. “SVD-CLAHE Boosting and Balanced Loss Function for Covid-19 Detection from an Imbalanced Chest X-Ray Dataset.†Computers in Biology and Medicine 150:106092. doi: https://doi.org/10.1016/j.compbiomed.2022.106092.

Satuan Tugas Penanganan COVID-19. 2022. “Perkembangan Kasus Terkonfirmasi Positif Covid-19 Per-Hari.†Covid19.Go.Id. Retrieved (https://covid19.go.id/id/peta-sebaran).

Satyo, Adhitio, Bayangkari Karno, Widi Hastomo, Yasin Efendi, and Ruri Irawati. 2021. “Arsitektur Alexnet Convolution Neural Network ( CNN ) Untuk Mendeteksi Covid-19 Image Chest-Xray.†482–85.

Srivastava, Gaurav, Aninditaa Chauhan, Mahesh Jangid, and Sandeep Chaurasia. 2022. “CoviXNet: A Novel and Efficient Deep Learning Model for Detection of COVID-19 Using Chest X-Ray Images.†Biomedical Signal Processing and Control 78:103848. doi: https://doi.org/10.1016/j.bspc.2022.103848.

Ukwuoma, Chiagoziem C., Zhiguang Qin, Victor Kwaku Agbesi, Chukwuebuka J. Ejiyi, Olusola Bamisile, Ijeoma A. Chikwendu, Bole W. Tienin, and Md Altab Hossin. 2022. “LCSB-Inception: Reliable and Effective Light-Chroma Separated Branches for Covid-19 Detection from Chest X-Ray Images.†Computers in Biology and Medicine 150:106195. doi: https://doi.org/10.1016/j.compbiomed.2022.106195.

Worldometers. 2022. “Reported Cases and Deaths by Country or Territory.†Worldometers.Com. Retrieved (https://www.worldometers.info/coronavirus/).

Downloads

Published

2022-11-17

Issue

Section

Articles