Analisis Resesi Ekonomi Indonesia Selama Pandemi Covid-19 Menggunakan Regresi Robust MM-Estimator
DOI:
https://doi.org/10.31764/justek.v6i4.20095Keywords:
Economic Recession, Covid-19, Robust Regression, MM-EstimatorAbstract
Abstract:Â This research discusses how to analyze the economic recession in Indonesia during the Covid-19 pandemic in 2020. Pandemic is one of the causes of economic recession due to inflation and drastic economic decline. The pandemic in question is caused by the spread of the Covid-19 virus which is sufficient and easy to infect humans in all age classes. As a result of the recession, the welfare of the community has decreased. In this study, researchers will analyze Indonesia's economic recession during the Covid-19 pandemic using real PRDB data. Real GRDP data was chosen because it will facilitate research because the data has a more specific value to be studied. This research uses quantitative research methods with Robust MM-Estimator regression. Robust regression is one of the methods in regression that serves to find the lowest error data. MM- Estimator is a combination of M- Estimator and S- Estimator so that it is resistant and has greater efficiency. The results of this research conducted using R Studio software show that there are outlier values in Indonesia's real GRDP data in 2020. Identified as outliers are observations 1, 4, 11, 13, 15, and 16.
Abstrak: Penelitian ini bertujuan untuk menganalisis data PDRB riil Indonesia tahun 2020 sebagai indikator resesi ekonomi dan menunjukkan daerah-daerah mana saja yang memiliki penanganan terbaik di sektornya masing-masing. Daerah tersebut akan menjadi acuan bagi daerah-daerah lain untuk mempersiapkan diri bila Indonesia kembali mengalami resesi ekonomi. Penelitian ini menggunakan metode penelitian kuantitatif dengan regresi Robust MM-Estimator. Regresi Robust merupakan salah satu metode didalam regresi yang berfungsi untuk mencari data error terendah. MM- Estimator merupakan penggabungan antara M- Estimator serta S- Estimator sehingga bersifat resisten dan memiliki efisiensi yang lebih besar. Hasil dari penelitian ini dilakukan dengan menggunakan software R Studio menunjukkan bahwa terdapat nilai pencilan pada data PDRB riil Indonesia tahun 2020. Teridentifikasi sebagai pencilan yaitu amatan ke-1, 4, 11, 13, 15, dan 16.References
Barua, S. (2020). Understanding Coronanomics: The Economic Implications of the Coronavirus (COVID-19) Pandemic. SSRN Electronic Journal, April, 1–44. https://doi.org/10.2139/ssrn.3566477
Blandina, S., Noor Fitrian, A., & Septiyani, W. (2020). Strategi Menghindarkan Indonesia dari Ancaman Resesi Ekonomi di Masa Pandemi. Efektor, 7(2), 181–190. https://doi.org/10.29407/e.v7i2.15043
Chen, X., Zhang, B., Wang, T., Wang, T., Bonni, A., & Zhao, G. (2020). Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinformatics, 21(1), 1–20. https://doi.org/10.1186/s12859-020-03608-0
Darmastuti, S., Juned, M., Susanto, F. A., & Al-Husin, R. N. (2021). COVID-19 dan Kebijakan dalam Menyikapi Resesi Ekonomi : Madani, 4(1), 70–86.
Grentzelos, C., Caroni, C., & Barranco-Chamorro, I. (2021). A comparative study of methods to handle outliers in multivariate data analysis. Computational and Mathematical Methods, 3(3), e1129. https://doi.org/https://doi.org/10.1002/cmm4.1129
Inesta, R., & Hukom, A. (2023). Analisis Fenomena Resesi Ekonomi Indonesia Dimasa Pandemi Virus Covid-19. Jurnal Manajemen Riset Inovasi, 1(2), 121–127. http://prin.or.id/index.php/mri/article/view/1054%0Ahttps://prin.or.id/index.php/mri/article/download/1054/1135
Junaedi, D., & Salistia, F. (2020). Dampak Pandemi COVID-19 Terhadap Pertumbuhan Ekonomi Negara-Negara Terdampak. Simposium Nasional Keuangan Negara, 2(1), 995–1013.
Kirigia, J. M., & Muthuri, R. N. D. K. (2020). The fiscal value of human lives lost from coronavirus disease (COVID-19) in China. BMC Research Notes, 13, 1–5.
Leo, S. (2013). Kiat Jitu Menulis Skripsi, Tesis, dan Disertasi. Jakarta: Erlangga.
Liu, W., Yue, X.-G., & Tchounwou, P. B. (2020). Response to the COVID-19 epidemic: the Chinese experience and implications for other countries. In International journal of environmental research and public health (Vol. 17, Issue 7, p. 2304). MDPI.
Mahera, N., & Nurwati, N. (2020). Krisis Ekonomi di Indonesia disebabkan Oleh Pandemi Covid-19. Universitas Padjajaran.
Miraza, B. H. (2019). Seputar Resesi dan Depresi. Jurnal Ekonomi KIAT, 30(2), 11–13.
Mohamed Almetwally, E., & Mohamed Almongy, H. (2018). Comparison Between M-estimation, S-estimation, And MM Estimation Methods of Robust Estimation with Application and Simulation Censoring Scheme View project Bivariate Distribution based on Copula. International Journal of Mathematical Archive, 9(11), 55. www.ijma.info
Moore, G. H. (1950). The National Bureau of Economic Research. The American Statistician, 4(3), 13–19. https://doi.org/10.2307/2682339
Rabi, F. A., Al Zoubi, M. S., Al-Nasser, A. D., Kasasbeh, G. A., & Salameh, D. M. (2020). Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens, 9(3), 1–14. https://doi.org/10.3390/pathogens9030231
Ramhah Putri, A., Yozza, H., & Yanuar, F. (2021). Regresi Robust Mm-Estimator Untuk Memodelkan Jumlah Kematian Balita Di Provinsi Jawa Timur Tahun 2017. Jurnal Matematika UNAND, 10(1), 71. https://doi.org/10.25077/jmu.10.1.71-78.2021
Simanungkalit, E. F. B. (2020). Simanungkalit / Journal Of Management (SME’s) Vol. 13, No.3, 2020, p327-340. Journal of Management, 13(3), 327–340.
Statistik, B. P. (2021). Statistik Keuangan Pemerintah Provinsi Tahun 2018-2021. Indonesia: Badan Pusat Statistik.
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: CV Alfabeta.
Utomo, A. P. (2014). Regresi Robust untuk Memodelkan Pendapatan Usaha Industri Makanan Non-Makloon Berskala Mikro Dan Kecil Di Jawa Barat Tahun 2013. Jurnal Matematika Sains Dan Teknologi, 15(2), 63–74.
Vanani, A. B., & Suselo, D. (2021). Determinasi Resesi Ekonomi Indonesia Dimasa Pandemi Covid-19. Jurnal Menara Ekonomi: Penelitian Dan Kajian Ilmiah Bidang Ekonomi, 7(2).