Pengaruh Nanoselulosa dari Pelepah Nipah sebagai Filler terhadap Sifat Bioplastik Polivinil Alkohol
DOI:
https://doi.org/10.31764/justek.v3i2.3704Keywords:
Bioplastic, Nanocellulose, Nypa fruticans, Polyvinyl alcohol, Acid hydrolysis,Abstract
In this research, the synthesis of nanocellulose from Nypa fruticans fronds as a filler of polyvinyl alcohol-based bioplastic has been carried out. Nanocellulose synthesis was carried out using sulfuric acid hydrolysis process with a concentration of 30% and the results were analyzed using a Particle Size Analyzer. The effect of addition of the amount of nanocellulose on bioplastics from polyvinyl alcohol such as moisture content, thickness, transparency, vapor transmission rate, solubility and functional group analysis using FTIR have been evaluated. The results showed that the nanocellulose from Nypa fruticans fronds had a diameter below 600 nm. The addition of nanocellulose with a concentration of 0.2%; 0.4% and 0.6% into the polyvinyl alcohol bioplastic can increase the thickness and transparency of the bioplastic, and reduce the water vapor transmission rate. However, the addition of nanocellulose in this range did not significantly affect the water content and the solubility of bioplastics in water.
References
Aguilar, N. M., Arteaga-Cardona, F., de Anda Reyes, M. E., Gervacio-Arciniega, J. J., & Salazar-Kuri, U. (2019). Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemistry and Physics, 238, 121921. doi:10.1016/j.matchemphys.2019.121921
Belibi, P. C., Daou, T. J., Ndjaka, J.-M. B., Michelin, L., Brendlé, J., Nsom, B., & Durand, B. (2013). Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite. Journal of Food Engineering, 115(3), 339-346. doi:10.1016/j.jfoodeng.2012.10.027
Darni, Y., Sitorus, T. M., & Hanif, M. (2014). Produksi Bioplastik dari Sorgum dan Selulosa Secara Termoplastik. Jurnal Rekayasa Kimia & Lingkungan, 10(2). doi:10.23955/rkl.v10i2.2420
Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., . . . Peijs, T. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1-33. doi:10.1007/s10853-009-3874-0
Hardjono, H., Suharti, P. H., Permatasari, D. A., & Sari, V. A. (2016). Pengaruh Penambahan Asam Sitrat terhadap Karakteristik Film Plastik Biodegradable dari Pati Kulit Pisang Kepok (Musa acuminata balbisiana Colla). Jurnal Bahan Alam Terbarukan, 5(1), 22-28. doi:10.15294/jbat.v5i1.5965
Jacoeb, A. M., Nugraha, R., & Dia utari, S. P. s. (2014). Pembuatan Edible Film dari Pati Buah Lindur dengan Penambahan Gliserol dan Karaginan. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1). doi:10.17844/jphpi.v17i1.8132
Khalifa, Y. (2016). Effect of the printing remedies and lamination techniques on barrier properties “WVTR and OTR Value†for Polypropylene Film. EC Nutrition, 5(2), 1089-1099.
Liu, D., Bian, Q., Li, Y., Wang, Y., Xiang, A., & Tian, H. (2016). Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Composites Science and Technology, 129, 146-152. doi:10.1016/j.compscitech.2016.04.004
Liu, R., Yu, H., & Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12(1), 25-34. doi:10.1007/s10570-004-0955-8
Nafchi, A. M., Alias, A. K., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113(4), 511-519. doi:10.1016/j.jfoodeng.2012.07.017
Naini, A.-A., Nurwahdah, N., Lestari, R. Y., & Sunardi, P. D. S. (2018). Praperlakuan secara Hidrotermal Limbah Lignoselulosa untuk Produksi Bioetanol Generasi Kedua (Pretreatment of Lignocellulose Wastes Using Hydrothermal Method for Producing Second Generation Bioethanol). Jurnal Riset Industri Hasil Hutan, 10(2), 93-102. doi:10.24111/jrihh.v10i2.4078
Noorbakhsh-Soltani, S. M., Zerafat, M. M., & Sabbaghi, S. (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydrate Polymers, 189, 48-55. doi:10.1016/j.carbpol.2018.02.012
Pereira, A. L. S., Nascimento, D. M. d., Souza Filho, M. d. s. M., Morais, J. P. S., Vasconcelos, N. F., Feitosa, J. P. A., . . . Rosa, M. d. F. (2014). Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohydrate Polymers, 112, 165-172. doi:10.1016/j.carbpol.2014.05.090
Puryati Ningsih, E., Ariyani, D., & Sunardi, S. (2019). Pengaruh Penambahan Carboxymethyl Cellulose Terhadap Karakteristik Bioplastik Dari Pati Ubi Nagara (Ipomoea batatas L.). Indo. J. Chem. Res., 7(1), 77-85. doi:10.30598//ijcr.2020.7-sun
Qua, E. H., Hornsby, P. R., Sharma, H. S. S., Lyons, G., & McCall, R. D. (2009). Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. Journal of Applied Polymer Science, 113(4), 2238-2247. doi:10.1002/app.30116
Silvério, H. A., Flauzino Neto, W. P., & Pasquini, D. (2013). Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly (vinyl alcohol) nanocomposites. Journal of Nanomaterials, 2013.
Sinaga, M. Z. E., Gea, S., Panindia, N., & Sihombing, Y. A. (2018). The Preparation of All-Cellulose Nanocomposite Film from Isolated Cellulose of Corncobs as Food Packaging. Oriental Journal of Chemistry, 34(1), 562.
Sosiati, H., Muhamin, M. m., Purwanto, P., Wijayanti, D. A., & Triyana, K. (2014). Nanocrystalline Cellulose Studied with a Conventional SEM. Paper presented at the Proceedings of the 2014 International Conference on Physics. http://dx.doi.org/10.2991/icp-14.2014.3
Sunardi, Istikowati, W. T., & Sari, D. I. (2019). Extraction of α-cellulose from Eleocharis dulcis Holocellulose using NaOH and KOH. Journal of Physics: Conference Series, 1397, 012031. doi:10.1088/1742-6596/1397/1/012031
Sunardi, P. D. S., Susanti, Y., & Mustikasari, K. (2020). Sintesis dan Karakterisasi Bioplastik dari Pati Ubi Nagara Dengan Kaolin Sebagai Penguat. Jurnal Riset Industri Hasil Hutan, 11(2), 65. doi:10.24111/jrihh.v11i2.5084
Supeni, G., Cahyaningtyas, A. A., & Fitrina, A. (2015). Karakterisasi sifat fisik dan mekanik penambahan kitosan pada edible film karagenan dan tapioka termodifikasi. Jurnal Kimia dan Kemasan, 37(2), 103-110.
Tamunaidu, P., & Saka, S. (2011). Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products, 34(3), 1423-1428.
Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate Polymers, 85(1), 7-16. doi:10.1016/j.carbpol.2011.01.030
Tian, H., Yan, J., Rajulu, A. V., Xiang, A., & Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96, 518-523. doi:10.1016/j.ijbiomac.2016.12.067
Vigneshwaran, N., Ammayappan, L., & Huang, Q. (2011). Effect of Gum arabic on distribution behavior of nanocellulose fillers in starch film. Applied Nanoscience, 1(3), 137-142. doi:10.1007/s13204-011-0020-5
Wijana, S., Rahmah, N. L., & Ansory, D. (2013). Studi Proses Pulping Serat Pelepah dan Serat Kulit Buah Nipah (Nypa Fruticans) Dengan Metode Kimia (Kajian Konsentrasi Larutan NaOH). Industria: Jurnal Teknologi dan Manajemen Agroindustri, 2(1), 37-46.