KONSTRUKSI BUKTI MATEMATIS MAHASISWA BERGAYA KOGNITIF REFLEKTIF

Authors

  • Minatun Nadlifah Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.31764/pendekar.v3i2.2893

Keywords:

konstruksi bukti matematis, gaya kognitif reflektif

Abstract

Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kualitas konstruksi bukti matematis yang dihasilkan oleh mahasiswa bergaya kognitif reflekttif. Penelitian dilakukan dengan menggunakan pendekatan kualitatif dengan jenis penelitian deskriptif-eksploratif. Penelitian melibatkan tiga mahasiswa tahun pertama bergaya kognitif reflektif yang menempuh mata kuliah teori bilangan . Data diperoleh melalui tiga tahapan. Pertama, identifikasi gaya kognitif mahasiswa dengan menggunakan instrumen Matching Familiar Figures Test (MFFT). Kedua, tes tertulis terkait masalah pembuktian. Ketiga, eksplorasi pemahaman mahasiswa tentang konstruksi bukti yang dihasilkan melalui teknik wawancara. Hasil penelitian menunjukkan bahwa terdapat tiga kategori kualitas konstruksi bukti yang dihasilkan oleh mahasiswa bergaya kognitif reflektif, yakni bukti kurang valid dan tidak valid. Hal ini berarti konstruksi bukti yang dihasilkan memuat kesalahan pada aspek struktur bukti dan pemahaman konseptual bukti.

Abstract:  The purpose of the study is to describe the quality of mathematical proof construction produced by the reflective cognitive style of undergraduate students’. The research was conducted by a qualitative approach and used a descriptive-explorative research type. The study involved three first-year undergraduate students who have a reflective cognitive style. The data were obtained through three stages. First, identify the students’ cognitive style using the Matching Familiar Figures Test (MFFT) instrument. Second, a proof written test. Third, exploration of the undergraduate students’ understanding of proof construction though interview technique. The results showed that there were three categories of quality of proof construction produced by the reflective cognitive style of undergraduate students, namely less valid proof and invalid proof. It means that the construction of the proof construction contains many errors in the aspects of the proof-structure and proof-conceptual understanding.

References

Abdussakir. (2014). Proses Berpikir Mahasiswa dalam Menyusun Bukti Matematis dengan Strategi Semantik. Jurnal Pendidikan Sains, 2(3), 132–140.

Alcock, L., Hodds, M., Roy, S., & Inglis, M. (2015). Investigating and Improving Undergraduate Proof Comprehension. Notices of the American Mathematical Society, 62(07), 1. https://doi.org/10.1090/noti1263

Alcock, L., & Weber, K. (2010). Undergraduates’ Example Use in Proof Construction: Purposes and Effectiveness. Investigations in Mathematics Learning, 3(1), 1–22. https://doi.org/10.1080/24727466.2010.11790298

Healy, L., & Hoyles, C. (1998). Justifying and proving in school mathematics. Technical Report on the Nationwide Survey (Mathematic). Institute of Education, University of London.

Kodirun. (2014). Pengaruh Pendekatan Progresif Terhadap Peningkatan Kemampuan Mahasiswa dalam Pembuktian dan Penulisan Jurnal Matematika. Sekolah Pascasarjana, Universitas Pendidikan Indonesia.

Michalska, P., & Zajac-Lamparska, L. (2015). The Measurement of Cognitive Style Reflection-Impulsivity in the Adulthood-Results of Own Study. Journal Polskie Forum Psychologiczne, 20(4), 573–588.

Nadlifah, M., & Prabawanto, S. (2017). Mathematical Proof Construction : Students ’ Ability in Higher Education Mathematical Proof Construction : Students ’ Ability in Higher Education. Journal of Physics: Conference Series, 895(1), 1–5.

Rosyada, A., & Rosyidi, A. H. (2018). Profil Pemecahan Masalah Matematika Konstektual Terbuka Siswa ditinjau dari Gaya Kognitif Reflektif dan Impulsif. Jurnal Ilmiah Pendidikan Matematika, 7(2), 299–307.

Salsabila, E., Ratnaningsih, & Hadi, I. (2015). Pembekalan Pemahaman Metode Pembuktian Matematika dan Penerapan Strategi Abduktif-Deduktif untuk Mengembangkan Kemampuan Membuktikan Konsep Aljabar Abstrak pada Mahasiswa Jurusan Matematika FMIPA UNJ. Jurnal Matematika Integratif, 11(1), 15–24.

Samparadja, H. (2014). Pengaruh Pendekatan Induktif-Deduktif Berbasis Definisi Termodifikasi dalam Pembelajaran Struktur Aljabar terhadap Peningkatan Kemampuan Pembuktian dan Disposisi Berpikir Kreatif Matematis Mahasiswa. Sekolah Pascasarjana, Universitas Pendidikan Indonesia,.

Selden, A. (2012). Transitions and Proof and Proving at Tertiary Level. In G. Hanna & M. de Villiers (Eds.), Proof and Proving in Mathematics Education : 19th ICMI Study (pp. 391–420). Springer.

Stylianou, D. A., Blanton, M. L., & Rotou, O. (2015). Undergraduate Students’ Understanding of Proof: Relationships Between Proof Conceptions, Beliefs, and Classroom Experiences with Learning Proof. International Journal of Research in Undergraduate Mathematics Education, 1(1), 91–134. https://doi.org/10.1007/s40753-015-0003-0

Syamsuri. (2016). Skema Berpikir Mahasiswa Dalam Mengonstruksi Bukti Formal Matematis Menggunakan Cognitive Mapping. Jurnal Penelitian Dan Pembelajaran Matematika, 9(1), 73–82.

Syamsuri, Purwanto, Subanji, & Irawati, S. (2016a). Facilitating Students From Inadequacy Concept in Constructing Proof to Formal Proof. 3rd International Conference on Research, Implementation and Education of Mathematics and Science, May, ME-34.

Syamsuri, S., Purwanto, P., Subanji, S., & Irawati, S. (2016b). Characterization of students formal-proof construction in mathematics learning. Communications in Science and Technology, 1(2), 42–50. https://doi.org/10.21924/cst.1.2.2016.2

Tall, D. (2011). Perceptions, operations and proof in undergraduate mathematics. 1(1), 19–27.

Published

2020-09-10

Issue

Section

Articles