Deteksi Overshooting Top Menggunakan Satelit Himawari-8 dan Dampaknya terhadap Cuaca Permukaan di Wilayah Jabodetabek ( September – November 2017)

Authors

  • Muhammad Subagya Prihatma Subagya Prihatmaja Sains Al Besari Badan Meteorologi Klimatologi dan Geofisika

Keywords:

bad weather, cumulonimbus, overshooting top, satellite

Abstract

Overshooting top (OT) results from a strong updraft on a cumulonimbus cloud that can penetrate to tropopause layer. The IRW-texture method can detect OT using the Himawari-8 satellite image of the IR-1 and visible channels. The IR-1 channel image determines the cloud top temperature must be less than 215 K, and the cloud top temperature is colder than 2.5 K from the NWP tropopause temperature, then computes the mean anvil temperature surrounding OT and subtract with the coldest cloud top temperature, so the difference is more than 6.5 K, then OT is identified. The visible channel image looks at the cloud texture shaped like a bump. OT occurrence is always associated with lightning activity, where OT, which results from convective clouds penetrating the tropopause layer, can increase lightning activity. Thus, an increase in lightning activity may indicate that OT occurs in a region. Research conducted from September to November 2017 in the Jabodetabek area obtained 14 cases of OT occurrence. OT mainly occurred between 14.00 to 16.00 WIB and mostly happened in the Bogor region. OT can cause bad weather on the surface, such as heavy rain, hail, and strong winds in a radius of up to 40 km.

References

Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. Journal of Applied Meteorology and Climatology, 49(2), 181–202. https://doi.org/10.1175/2009JAMC2286.1

Bedka, K. M. (2011). Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmospheric Research, 99(2), 175–189. https://doi.org/10.1016/j.atmosres.2010.10.001

Glickman, T. S. (2000). Glossary of Meteorology (Second). American Meteorology Society.

Heymsfield, G. M. , R. F. & J. D. S. (1991). Aircraft overflight measurements of Midwest severe storms. Implications and geosynchronous satellite interpretations. Monthly Weather Review, 2, 436–456.

Khasanah, R. , dan M. (2015). Analisis Pemetaan Daerah Rawan Petir dengan Menggunakan Metode Kriging di Wilayah Kota/Kabupaten Pasuruan. Jurnal Inovasi Fisika Indonesia, 4(3), 157–162.

Krollová, S. (2011). CUMULUS AND STRATUS CLOUDS MICROSTRUCTURE. Perner’s Contacts, 6(4), 143–148. https://pernerscontacts.upce.cz/index.php/perner/article/view/911

Madjid, F. M. , H. E. , dan M. A. (2017). Deteksi Overshooting Top Menggunakan Infrared Brightness Temperature Dan Visible Channel (Studi Kasus Tanggal 24 September 2016). Seminar Nasional Pekan Ilmiah Fisika UNY.

Mikus, P., Mahović, N. S., & PoÄakal, D. (2015). Lightning, overshooting top and hail characteristics for strong convective storms in Central Europe. Atmospheric Research, 161–162, 153–168. https://doi.org/https://doi.org/10.1016/j.atmosres.2015.03.020

Mikuš, P., & Strelec Mahović, N. (2013). Satellite-based overshooting top detection methods and an analysis of correlated weather conditions. Atmospheric Research, 123, 268–280. https://doi.org/10.1016/j.atmosres.2012.09.001

Septiadi, D. (2014). Pola Keterkaitan Antara Karakteristik Petir Dan Curah Hujan Lebat Berbasis Statistika Asosiasi Geografik Di Jawa Barat. Institut Teknologi Bandung.

Zakir, A. , S. W. , dan K. M. (2010). Perspektif Operasional Cuaca Tropis. Badan Meteorologi Klimatologi dan Geofisika.

Downloads

Published

2023-04-15