PENINGKATAN KEMAMPUAN DATA ANALYTIC MELALUI PELATIHAN ASEAN DATA SCIENCE EXPLORERS MENGGUNAKAN SAP ANALYTIC CLOUD
DOI:
https://doi.org/10.31764/jpmb.v6i4.10734Keywords:
data analysis, industrial revolution 4.0, SAP analytics cloudAbstract
ABSTRAK
Kegiatan pengabdian masyarakat ini dilatarbelakangi oleh kerjasama kawan menggunakan ASEAN Foundation dan SAP. Pada tanggal 12 Maret 2021 kegiatan yang dilaksanakan secara virtual ini menggunakan platform Meeting Room dan Virtual Classroom. Peserta berasal dari mahasiswa dari Fakultas Teknik Universitas Dr.Hamka (UHAMKA) Jakarta. Metode yang digunakan untuk menguji manfaat dari perangkat lunak SAP Analytics Cloud ini berupa pelatihan dengan melakukan teknik pengumpulan data populasi Fakultas Teknik Uhamka. Kuesioner yang diberikan kepada mahasiswa berhubungan dengan uji validasi dan kebenaran penyampaian materi pelatihan. Lalu kualitas pengumpulan data yang sesuai dengan realitas saat ini dengan menggunakan instrumen kuantitatif kualitas. Hasil evaluasi ini yaitu terdapat 40 mahasiswa yang bersedia mengikuti kompetisi SAP Analitycs Cloud. Dengan dilaksanakannya kegiatan pelatihan ini sebanyak 85,76% peserta training sudah menaruh pemahaman mengenai SAP Analytics Cloud untuk menjawab tantangan era Revolusi Industri 4.0 mengenai analisis data.
Â
Kata Kunci: analisis data; revolusi industri 4.0; SAP analytics cloud
Â
ABSTRACT
This community service activity was motivated by the collaboration of friends using the ASEAN Foundation and SAP. On March 12, 2021, this virtual activity will use the Meeting Room and Virtual Classroom platforms. Participants came from students from the Faculty of Engineering, Dr. Hamka University (UHAMKA) Jakarta. The method used to test the benefits of the SAP Analytics Cloud software is in the form of training by performing population data collection techniques, Faculty of Engineering, Uhamka. Questionnaires given to students relate to the validation test and the correctness of the delivery of training materials. Then the quality of data collection in accordance with current reality by using quality quantitative instruments. The results of this evaluation are that there are 40 students who are willing to take part in the SAP Analytics Cloud competition. With the implementation of this training activity, 85.76% of the training participants have an understanding of SAP Analytics Cloud to answer the challenges of the Industrial Revolution 4.0 era regarding data analysis.
Â
Keywords: data analysis; industrial revolution 4.0; SAP analytics cloud
References
Agung, Anak, Gede Oka, Kessawa Adnyana, and Komang Oka Saputra. 2019. “Design of Data Warehouse for University Library Using Kimball and Ross 9 Steps Methodology.†International Journal of Engineering and Emerging Technology 4(1): 1–4.
Anggraini, Novita, S Kom, Heri Suroyo, and M Kom. 2019. “Comparison of Sentiment Analysis against Digital Payment ‘ T -Cash and Go- Pay ’ in Social Media Using Orange Data Mining Perbandingan Analisis Sentimen Terhadap Digital Payment ‘ T -Cash Dan Go- Pay ’ Di Sosial Media Menggunakan Orange Data Mining.†1(1): 152–63.
Aseandse. 2021. “SAP Analytic Cloud - ASEAN Data Science Explorers.†: aseandse.org.
Bakar, Mohamad Shahbani Abu, Azman Ta’a, Suwannit Chareen Chit, and Mohd Hafeez Soid. 2017. “DATA WAREHOUSE SYSTEM FOR BLENDED LEARNING IN INSTITUTIONS OF HIGHER EDUCATION.†e-Academia Journal 6(1): 86–98.
Bhaskara, I Made Adi, Luh Gede Putri Suardani, and Made Sudarma. 2018. “Data Warehouse Implemantation To Support Batik Sales Information Using MOLAP.†IJEET (International Journal of Engineering and Emerging Technology) 3(1): 45–51.
Bourekkadi, S. et al. 2020. “Toward Increasing and Investigating E-Tourism Data Warehouse through a Websites Analysis Strategy.†Journal of Theoretical and Applied Information Technology 10(19): 3222–32.
Garcelon, Nicolas et al. 2018. “Next Generation Phenotyping Using Narrative Reports in a Rare Disease Clinical Data Warehouse.†Orphanet Journal of Rare Diseases 13(1): 1–11.
Harlina, Sitti. 2018. “Data Mining Pada Penentuan Kelayakan Kredit Menggunakan Algoritma K-Nn Berbasis Forward Selection Data Mining on Credit Feasibility Determination Using K-Nn Algorithm Based on Forward Selection.†CCIT Journal 11(2): 236–44.
Hasan, Firman Noor. 2019. “Implementasi Sistem Business Intelligence Untuk Data Penelitian Di Perguruan Tinggi.†Prosiding Seminar Nasional Teknoka 4(2502): I1–10.
Hasan, Firman Noor, and Arafat Febriandirza. 2021. “Perancangan Data Warehouse Untuk Data Penelitian Di Perguruan Tinggi Menggunakan Pendekatan Nine Steps Methodologhy.†Pseudocode VIII(1): 49–57.
Huang, Chaolin et al. 2020. “Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China.†Lancet (London, England) 395(10223): 497–506.
Kimball, Ralph, and M Ross. 2010. The Data Warehouse Lifecycle Toolkit, Relentlessly Practical Tools for Data Warehousing and Business Intelligence. Wiley Publishing, Inc.
Maesaroh, Maesaroh, Gufron Amirullah, Eka Kartikawati, and Mega Elvianasti. 2020. “Pelatihan Pembelajaran Biologi Berbasis ICT Bagi Guru Muhammadiyah DKI Jakarta.†Jurnal SOLMA 9(2): 347–53.
Nadikattu, Rahul Reddy. 2020. “Data Warehouse Architecture – Leading the Next Generation Data Science.†SSRN Electronic Journal 67(9): 78–80.
Pranatawijaya, Viktor Handrianus, Widiatry Widiatry, Ressa Priskila, and Putu Bagus Adidyana Anugrah Putra. 2019. “Penerapan Skala Likert Dan Skala Dikotomi Pada Kuesioner Online.†Jurnal Sains dan Informatika 5(2): 128–37.
Downloads
Published
Issue
Section
License
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
Selaparang : Jurnal Pengabdian Masyarakat Berkemajuan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.