Frieze Group in Generating Traditional Cloth Motifs of the East Nusa Tenggara Province
DOI:
https://doi.org/10.31764/jtam.v6i3.8568Keywords:
Frieze group, Traditional cloth motifs, Tenun ikat, Motif generation.Abstract
Ethnomathematics studies the relationship between mathematics and culture. Indonesia has many traditional cultures. One of them is traditional cloth. The traditional cloth from East Nusa Tenggara (NTT) province is called tenun ikat. Since the motif of tenun ikat consists of symmetrical and repeated patterns, it can be generated using Frieze groups. The Frieze groups are the plane symmetry groups of patterns whose subgroups of translations are isomorphic to Z. There are seven groups in the Frieze groups, i.e., F_1, F_2, F_3, F_4, F_5, F_6, and F_7. Translation, reflection, rotation, and glide reflection are the transformation used in the Frieze groups. In this paper, Frieze groups are used to generate digital tenun ikat motifs from the basic pattern. Since one piece of original tenun ikat may consist of some basic patterns, the basic patterns are identified first, and then each of them is generated into the desired pattern, according to the suitable Frieze groups. Furthermore, a GUI Matlab program is developed to generate the Frieze groups. Three motifs of tenun ikat are presented to demonstrate the implementation of Frieze groups. With the Frieze group, users can generate other patterns from a basic pattern, so users can generate new motifs of tenun ikat without leaving the cultural characteristics of NTT province.
Â
References
Abdullah, N., Salleh, N. S. M., Arif, H. A., Noor, A. I. M., & Omar, J. (2019). Symmetry Patterns: An Analysis on Frieze Patterns in Malay Telepuk Fabric. International Journal of Technical Vocational and Engineering Technology, 1(1), 38–45. http://www.journal.pktm.org/index.php/ijtvet/article/view/15
Administrator. (2019). Tenun NTT, Harta Keluarga yang Bernilai Tinggi. https://www.indonesia.go.id/ragam/budaya/kebudayaan/tenun-ntt-harta-keluarga-yang-bernilai-tinggi
Andriani, L., Muchyidin, A., & Raharjo, H. (2020). Frieze Group Pattern in Buyung Dance Formation. EduMa: Mathematics Education Learning and Teaching, 9(2), 11–24. https://doi.org/10.24235/eduma.v9i2.6960
Azizah, N. (2021). Tenun NTT Butuh Regenerasi Perajin. https://www.republika.co.id/berita/quq9z8463/tenun-ntt-butuh-regenerasi-perajin
Davvaz, B. (2021). Frieze and Wallpaper Symmetry Groups. In Groups and Symmetry. 179–212. Springer, Singapore. https://doi.org/10.1007/978-981-16-6108-2_9
De Las Peñas, M. L. A. N., Garciano, A., Verzosa, D. M., & Taganap, E. (2018). Crystallographic Patterns in Philippine Indigenous Textiles. Journal of Applied Crystallography, 51(2), 456–469. https://doi.org/10.1107/S1600576718002182
Gallian, J. (2021). Contemporary Abstract Algebra. In Contemporary Abstract Algebra (9th ed.). Boston: Cengage Learning. https://doi.org/10.1201/9781003142331
Gual, Y. A. (2021). Pergeseran Penggunaan Tenun Ikat pada Masyarakat Desa Tanah Putih. Jurnal Ilmu Komunikasi, 2(1), 85–110. https://journal.unwira.ac.id/index.php/VERBAVITAE/article/view/463
Hidayati, F. N., & Prahmana, R. C. I. (2022). Ethnomathematics’ Research in Indonesia during 2015-2020. Indonesian Journal of Ethnomathematics, 1(1), 29–41. https://journal.i-mes.org/index.php/ije/article/view/14
Hobanthad, S., & Prajonsant, S. (2021). Application of Wallpaper Group p6m to Creation of Handwoven Mudmee Silk Patterns. Mathematical Journal, 66(704), 7–25. https://doi.org/10.14456/mj-math.2021.7
Kartika, D., Suwanto, F. R., Niska, D. Y., & Ilmiyah, N. F. (2022). Analysis of Frieze and Crystallographic Patterns of North Sumatran Malay Songket Textile. Journal of Physics: Conference Series, 2193, 1–9. https://doi.org/10.1088/1742-6596/2193/1/012085
Koss, L. (2021). One-color Frieze Patterns in Friendship Bracelets: A Cross-Cultural Comparison. Bridges 2021 Conference Proceedings, October, 253–256.
Libo-On, J. T. (2019). Crystallographic and Frieze Groups Structures in Hablon. International Journal of Advance Study and Research Work, 2(5), 25–36. https://doi.org/10.5281/zenodo.3236439
Maghiszha, D. F. (2019). Mengenal Tenun ikat Khas NTT, Sejarah hingga Proses Pembuatannya. https://www.tribunnewswiki.com/2019/12/30/mengenal-tenun-ikat-khas-ntt-sejarah-hingga-proses-pembuatannya
Makur, A. P., Gunur, B., & Rampung, B. (2020). Exploring Motifs in Towe Songke, Manggaraian Ethnic Woven Fabric, in Mathematics Perspective. SJME (Supremum Journal of Mathematics Education), 4(2), 124–133. https://doi.org/10.35706/sjme.v4i2.3457
Nainupu, J. S. (2018). Museum Tenun ikat Provinsi Nusa Tenggara Timur. Universitas Kristen Duta Wacana.
Nataliani, Y., Wellem, T., & Iriani, A. (2021). Pembangkitan Pola menggunakan Konsep Grup Kertas Dinding. AITI, 81(1), 1–13. https://doi.org/10.24246/aiti.v18i1.1-13
Nggumbe, C. L. B. P., Mayasari, K., & Jamco, T. H. M. (2018). Pola Frieze pada Batik Papua. Seminar Nasional Matematika Dan Pendidikan Matematika, 44–49.
Novemyleo. (2020). Fantastik, Selembar Tenun Ikat NTT Bisa Capai Harga Ratusan Juta Rupiah, Ini Alasannya. https://poskupangwiki.tribunnews.com/2020/01/02/fantastik-selembar-tenun-ikat-ntt-bisa-capai-harga-ratusan-juta-rupiah-ini-alasannya?page=all
Oktavianto, R. G., Ratnasari, R. R. L. H., & Puspitasari, A. D. (2018). Frieze Group dalam Tari Saman. Seminar Nasional Matematika Dan Pendidikan Matematika, 72–77.
Puspasari, R., Hartanto, S., Gufron, M., Wijayanti, P., & Budiarto, M. T. (2022). Frieze Pattern on Shibori Fabric. Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang, 6(1), 67–78. https://doi.org/10.31331/MEDIVESVETERAN.V6I1.1904
Rahmawati, A., Helmi, H., & Fran, F. (2018). Frieze Group pada Seni Dekoratif Mesjid. Buletin Ilmiah Math, Stat, Dan Terapannya, 7(1), 23–32. https://doi.org/10.26418/bbimst.v7i1.23583
Redaksi impresinews.com. (2021). Julie Klaim Tenun Ikat NTT di Akui oleh Dunia. https://impresinews.com/julie-klaim-tenun-ikat-ntt-di-akui-oleh-dunia/
Redaksi Kompas. (2019). Ketika Tenun Ikat NTT Mulai Mendunia. https://www.kompas.id/baca/arsip/2019/09/06/ketika-tenun-ikat-ntt-mulai-mendunia
Redaksi PI. (2021). Kain Tenun ikat khas NTT: Kain Kuno Bernilai Tinggi. https://pariwisataindonesia.id/headlines/kain-tenun-ikat-khas-ntt/
Risdiyanti, I., & Prahmana, R. C. I. (2017). Ethnomathematics: Exploration in Javanese culture. The 1st Ahmad Dahlan International Conference on Mathematics and Mathematics Education, 1–6.
Rosa, M., Shirley, L., Gavarrete, M. E., & Alangui, W. V. (Eds.). (2017). Ethnomathematics and its Diverse Approaches for Mathematics Education (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-319-59220-6
Salma, I. R., Syabana, D. K., Satria, Y., & Cristianto, R. (2018). Diversifikasi Desain Produk Tenun ikat Nusa Tenggara Timur dengan Paduan Teknik Tenun dan Teknik Batik. Dinamika Kerajinan Dan Batik: Majalah Ilmiah, 35(2), 85–94. https://doi.org/10.22322/dkb.v35i2.4174
Shin, H., Sheen, S., Kwon, H., & Mun, T. (2021). Korean Traditional Patterns: Frieze and Wallpaper. Handbook of the Mathematics of the Arts and Sciences, 649–664. https://doi.org/10.1007/978-3-319-57072-3_17
Sroyer, A. M., Nainggolan, J., & Hutabarat, I. M. (2018). Exploration of Ethnomathematics of House and Traditional Music Tools Biak-Papua Cultural. Formatif: Jurnal Ilmiah Pendidikan IPA, 8(3), 175–184. https://doi.org/10.30998/formatif.v8i3.2751
Starinsky, M., & Hoffmeyer, K. (2008). The Cleveland Museum of Art Repeat, Repeat, Pattern, Pattern (1st ed.). Cleveland Museum of Art.
Truna, L. A., Tugang, N. B., Shaipullah, N. C. M., & Mahyan, N. R. D. (2021). Analysis of Frieze Patterns Concepts in Pua Kumbu. Natural Volatiles & Esential Oils, 8(4), 10949–10962. https://www.nveo.org/index.php/journal/article/view/2295/2027
Vasquez, R. S., Valera, N. B., & Zales, J. P. (2020). Crystallographic Pattern Analysis of the Loom Woven Clothes of Abra. International Journal of Innovation, Creativity and Change, 14(3), 353–381. https://www.ijicc.net/images/Vol_14/Iss_3/14323_Vasquez_2020_E_R.pdf
Zarbaliyev, H. (2017). Multiculturalism in Globalization Era: History and Challenge for Indonesia. Journal of Social Studies, 13(1), 1–16. https://doi.org/10.21831/jss.v13i1.16966
Downloads
Published
Issue
Section
License
Authors who publish articles in JTAM (Jurnal Teori dan Aplikasi Matematika) agree to the following terms:
- Authors retain copyright of the article and grant the journal right of first publication with the work simultaneously licensed under a CC-BY-SA or The Creative Commons Attribution–ShareAlike License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).