Clustering the Distribution of COVID-19 in Aceh Province Using the Fuzzy C-Means Algorithm

Authors

  • Nurdin Nurdin Departement of Informatics, Universitas Malikussaleh, Aceh
  • Suci Fitriani Departement of Informatics, Universitas Malikussaleh, Aceh
  • Zara Yunizar Departement of Informatics, Universitas Malikussaleh, Aceh
  • Bustami Bustami Departement of Informatics, Universitas Malikussaleh, Aceh

DOI:

https://doi.org/10.31764/jtam.v6i3.8576

Keywords:

Fuzzy C-Means, Covid-19, Clustering, Zone.

Abstract

COVID-19 is a virus that attacks the respiratory system in humans and spreads rapidly. The government has taken various ways to reduce the rate of transmission of COVID-19, including by providing a COVID-19 information center that can be accessed by anyone, but there is no grouping of regional zones with high to low COVID-19 cases. Therefore, a clustering process system for the spread of COVID-19 is needed so that it is able to provide information on clusters of COVID-19 distribution areas in Aceh with the highest case zone (red zone), medium case zone (yellow zone), and low case zone (green zone). The steps carried out in this study using the Fuzzy C-Means Algorithm are collecting data (input data), conducting the clustering process (determining the number of clusters, weighting rank, maximum iteration and epsilon), displaying clustering results. In this study, the authors collected COVID-19 data from 23 districts/cities in Aceh using 6 variables consisting of confirmed, in care, healed, died, suspected, and probable. The results of the clustering study on the spread of COVID-19 are as follows: One district/city in cluster 1 (red zone), the four districts/cities in cluster 2 (yellow zone), eighteen districts/cities in cluster 3 (green zone). Based on the results of this study, the Fuzzy C-Means Algorithm can be used and applied properly in clustering the spread of COVID-19 in the Province of Aceh.

 

References

Agustini, F. (2017). Implementasi Algoritma Fuzzy C-Means Studi Kasus Penjualan Di Sushigroove Restaurant. Jurnal Ilmu Pengetahuan Dan Teknologi Komputer, 3(1), 127–132.

Akat, M., & Karatas, K. (2020). Psychological Effects of COVID-19 Pandemic on Society and Its Reflections on Education. Journal of Turkish Studies, Volume 15(Volume 15 Issue 4), 1–13. https://doi.org/10.7827/turkishstudies.44336

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The Fuzzy C-Means Clustering Algorithm James. Computers & Geosciences, 10(2–3), 1783–1784. https://doi.org/10.1109/igarss.1988.569600

Crnogorac, V., Grbic, M., Dukanovic, M., & Matic, D. (2021). Clustering of European countries and territories based on cumulative relative number of COVID 19 patients in 2020. 2021 20th International Symposium Infoteh-Jahorina, Infoteh 2021 - Proceedings, March, 17–19. https://doi.org/10.1109/INFOTEH51037.2021.9400670

Darapaneni, N., J, V., Paduri, A. R., Kumar, P., S, V., Thangeda, K. C., & Thakur, A. (2021). Machine learning approach for clustering of countries to identify the best strategies to combat Covid-19. 2021 IEEE International IOT, Electronics and Mechatronics Conference, IEMTRONICS 2021. https://doi.org/10.1109/IEMTRONICS52119.2021.9422621

Doroshenko, A. (2020). Analysis of the distribution of COVID-19 in Italy using clustering algorithms. Proceedings of the 2020 IEEE 3rd International Conference on Data Stream Mining and Processing, DSMP 2020, 325–328. https://doi.org/10.1109/DSMP47368.2020.9204202

Farizi, S. Al, & Harmawan, B. N. (2020). Data Transparency and Information Sharing: Coronavirus Prevention Problems in Indonesia. Jurnal Administrasi Kesehatan Indonesia, 8(1), 35–50. https://doi.org/10.20473/jaki.v8i2.2020.35-50

Fernandes, N. (2020). Economic effects of coronavirus outbreak ( COVID-19 ) on the world economy. SSRN Electronic Journal, 2(1), 0–29.

König, J., Jäger-Biela, D. J., & Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43(4), 608–622. https://doi.org/10.1080/02619768.2020.1809650

Kurniawan, R., Abdullah, S. N. H. S., Lestari, F., Nazri, M. Z. A., Mujahidin, A., & Adnan, N. (2021). Clustering and Correlation Methods for Predicting Coronavirus COVID-19 Risk Analysis in Pandemic Countries. 2020 8th International Conference on Cyber and IT Service Management, CITSM 2020. https://doi.org/10.1109/CITSM50537.2020.9268920

Muslimatin, B. (2011). Perbandingan Metode K-Means dan Metode Fuzzy C-Means (FCM) UNTUK Clustering Data (Studi Kasus pada Data Saham Harian PT. Astra, Tbk.).

Naik, N., Jenkins, P., Savage, N., & Yang, L. (2018). Cyberthreat Hunting - Part 2: Tracking Ransomware Threat Actors using Fuzzy Hashing and Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–6. https://doi.org/10.1109/FUZZ-IEEE.2019.8858825

Noviyanto. (2020). Penerapan Data Mining Dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia. Paradigma-Jurnal Informatika Dan Komputer, 22(2), 183–188. https://doi.org/https://doi.org/10.31294/p.v21i2 Paradigma

Nurdin, Nasution, U. M. P., Aidilof, H. A., & Bustami. (2022). Implementasi Fuzzy C-Means untuk Menentukan Tingkat Kepuasan Mahasiswa dalam Pembelajaran Online Implementation of Fuzzy C-Means to Determine Student Satisfaction Levels. Sistemasi: Jurnal Sistem Informasi, 11(1), 121–136.

Ozili, P. K., & Arun, T. (2020). Spillover of COVID-19: Impact on the Global Economy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3562570

Ren, L. L., Wang, Y. M., Wu, Z. Q., Xiang, Z. C., Guo, L., Xu, T., Jiang, Y. Z., Xiong, Y., Li, Y. J., Li, X. W., Li, H., Fan, G. H., Gu, X. Y., Xiao, Y., Gao, H., Xu, J. Y., Yang, F., Wang, X. M., Wu, C., … Wang, J. W. (2020). Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal, 133(9), 1015–1024. https://doi.org/10.1097/CM9.0000000000000722

Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. https://doi.org/10.1016/j.jaut.2020.102433

S, P., R V, N., Chowdry B, S., & K, S. P. (2021). Fuzzy clustering using Hybrid CSO-PSO search based on Community mobility during COVID 19 lockdown. Proceedings - 5th International Conference on Computing Methodologies and Communication, ICCMC 2021, August 2020, 1515–1519. https://doi.org/10.1109/ICCMC51019.2021.9418026

Shan, Y., & Zhi, Z. (2016). A novel fuzzy SVM based on fuzzy c-means for credit scoring. 2016 2nd IEEE International Conference on Computer and Communications, ICCC 2016 - Proceedings, 1349–1353. https://doi.org/10.1109/CompComm.2016.7924924

Solichin, A., & Khairunnisa, K. (2020). Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means. Fountain of Informatics Journal, 5(2), 52–59. https://doi.org/10.21111/fij.v5i2.4905

Suni, N. S. P. (2020). Kesiapsiagaan Indonesia Menghadapi Potensi Penyebaran Corona. INFO Singkat, XII(3), 13–18. https://berkas.dpr.go.id/puslit/files/info_singkat/Info Singkat-XII-3-I-P3DI-Februari-2020-1957.pdf

Sunori, S. K., Negi, P. B., Maurya, S., Juneja, P., Rana, A., & Bhawana. (2021). K-Means Clustering of Ambient Air Quality Data of Uttarakhand, India during Lockdown Period of Covid-19 Pandemic. Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021, 1254–1259. https://doi.org/10.1109/ICICT50816.2021.9358627

Susilo, A., Rumende, C. M., Pitoyo, C. W., Santoso, W. D., Yulianti, M., Herikurniawan, H., Sinto, R., Singh, G., Nainggolan, L., Nelwan, E. J., Chen, L. K., Widhani, A., Wijaya, E., Wicaksana, B., Maksum, M., Annisa, F., Jasirwan, C. O. M., & Yunihastuti, E. (2020). Coronavirus Disease 2019: Review of Current Literatures. Jurnal Penyakit Dalam Indonesia, 7(1), 45. https://doi.org/10.7454/jpdi.v7i1.415

World Health Organization (WHO). (2020). Global Surveillance for human infection with novel coronavirus (2019-nCoV). Interim Guidance, 1–2. https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novel-coronavirus-(2019-ncov)

Zambrano-Monserrate, M. A., Ruano, M. A., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Science of the Total Environment, 728, 138813. https://doi.org/10.1016/j.scitotenv.2020.138813

Published

2022-07-16

Issue

Section

Articles