Inclusion Properties of Henstock-Orlicz Spaces

Authors

  • Elin Herlinawati Mathematics Study Program, Universitas Terbuka

DOI:

https://doi.org/10.31764/jtam.v6i3.8618

Keywords:

Henstock-Kurzweil, Henstock-Orlicz, Inclusion Property,

Abstract

Henstock-Orlicz spaces were generally introduced by Hazarika and Kalita in 2021. In general, a function is Lebesgue integral if only if that function and its modulus are Henstock-Kurzweil integrable functions. Moreover, suppose a function is a finite measurable function with compact supports. In that case, the function is a Henstock-Kurzweil integrable function if only if the function is a Lebesgue integrable function. Due to these properties, Henstock-Orlicz spaces were constructed by utilizing Young functions. This definition is almost similar to the definition of Orlicz spaces, but by embedding the Henstock-Kurzweil integral, and the norm used is the Luxembourg norm. Therefore, an analysis of properties in these spaces is needed carried out more deeply. This research was using a literature study on inclusion properties from scientific journals, especially those related to the Orlicz Spaces. And based on the definition of Henstock-Orlicz spaces and its norm, we formulate a hypothesis regarding the inlcusion properties. By deductive proof, we proof the hypothesis and state it as theorem. In this study, we obtain sufficient and necessary conditions for the inclusion properties in Henstock-Orlicz spaces.

 

Author Biography

Elin Herlinawati, Mathematics Study Program, Universitas Terbuka

Mathematics Study Program

References

Boccuto, A., RieÄan, B., & Vrábelová, M. (2012). Kurzweil - Henstock integral in Riesz spaces. In Bentham Science Publishers. Bentham Science Publishers. https://doi.org/10.2174/97816080500311090101

Ebadian, A., & Jabbari, A. (2021). Generalization of Orlicz spaces. Monatsh Math, 196, 699–736. https://doi.org/https://doi.org/10.1007/s00605-021-01627-4

Ferreira, R., Hästö, P., & Ribeiro, A. M. (2020). Characterization of generalized Orlicz spaces. Communications in Contemporary Mathematics, 22(2), 1–18. https://doi.org/10.1142/S0219199718500797

Hazarika, B., & Kalita, H. (2021). Henstock-Orlicz space and its dense space. Asian-European Journal of Mathematics, 14(7), 1–17. https://doi.org/10.1142/S179355712150114X

Herlinawati, E. (2021). Beberapa sifat fungsi-fungsi terintegralkan henstock-kurzweil di ruang berdimensi-n (. JMPM: Jurnal Matematika Dan Pendidikan Matematika, 6(1), 81–89.

Kalita, H., & Hazarika, B. (2021). Countable additivity of Henstock–Dunford integrable functions and Orlicz Space. Analysis and Mathematical Physics, 11(2), 1–13. https://doi.org/10.1007/s13324-021-00533-0

Kalita, H., Salvador, S., & Hazarika, B. (2020). Henstock-Orlicz spaces with respect to vector measure Henstock-Orlicz spaces with respect to vector measure. 14th International Conference MSAST, December.

Lee, T. Y. (2011). Henstock-Kurzweil integration on Euclidean spaces. In Henstock-Kurzweil Integration on Euclidean Spaces. world scientific. https://doi.org/10.1142/7933

Leng, N. W., & Yee, L. P. (2018). An Alternative Definition Of The Henstock-Kurzweil Integral Using Primitives. New Zealand Journal of Mathematics, 48, 121–128.

Liu, G. Y. and W. (2016). The Distributional Henstock-Kurzweil Integral and Applications: a Survey. Journal of Mathematical Study, 49(4), 433–448. https://doi.org/10.4208/jms.v49n4.16.06

Malý, J., & Kuncová, K. (2019). On a generalization of henstock-kurzweil integrals. Mathematica Bohemica, 144(4), 393–422. https://doi.org/10.21136/MB.2019.0038-19

Masta, A. ., Gunawan, H., & Budhi, W. S. (2016). Inclusion properties of Orlicz and weak Orlicz spaces. Journal of Mathematical and Fundamental Sciences, 48(3), 193–203. https://doi.org/10.5614/j.math.fund.sci.2016.48.3.1

Masta, A. ., Gunawan, H., & Setya-Budhi, W. (2017a). An inclusion property of Orlicz-Morrey spaces. Journal of Physics: Conference Series, 893(1). https://doi.org/10.1088/1742-6596/893/1/012015

Masta, A. ., Gunawan, H., & Setya-Budhi, W. (2017b). On Inclusion Properties of Two Versions of Orlicz–Morrey Spaces. Mediterr. J. Math, 14(228). https://doi.org/https://doi.org/10.1007/s00009-017-1030-7

Mendoza-Torres, F. J., Morales-Macías, M. G., Sánchez-Perales, S., & Escamilla-Reyna, J. A. (2015). Henstock-Kurzweil Integral Transforms and the Riemann-Lebesgue Lemma. Fourier Transform - Signal Processing and Physical Sciences. https://doi.org/10.5772/59766

Mendoza Torres, F. J., Escamilla Reyna, J. A., & Sánchez-Perales, S. (2002). Some Result about The Henstock-Kurzweil Fourier Transform. Mathematica Bohemica, 127(1), 379–386.

Mendoza Torres, F. J., Escamilla Reyna, J. A., & Sánchez Perales, S. (2009). Inclusion relations for the spaces L(â„), HK (â„) BV(â„), and L 2(â„). Russian Journal of Mathematical Physics, 16(2), 287–289. https://doi.org/10.1134/S1061920809020113

Prayoga, P. ., Fatimah, S., & Masta, A. . (2020). Several Properties of Discrete Orlicz Spaces. European Alliance for Innovation n.o. Https://Doi.Org/10.4108/Eai.12-10-2019.2296392, 3(2). https://doi.org/10.4108/eai.12-10-2019.2296392

Royden, H., & Fitzpatrick, P. (2010). Real Analysis (4th Edition). In Prentice Hall.

Sánchez-Perales, S., Mendoza Torres, F. J., & Escamilla Reyna, J. A. (2012). Henstock-kurzweil integral transforms. International Journal of Mathematics and Mathematical Sciences, 2012, 1–12. https://doi.org/10.1155/2012/209462

Talvila, E. (2002). Henstock-kurzweil fourier transforms. Illinois Journal of Mathematics, 46(4), 1207–1226.

Published

2022-07-16

Issue

Section

Articles